
Lecture 22: Introduction to
Sorting

CSE 373: Data Structures and
Algorithms

1

Administrivia

 Project 4 due wed 6/1
 - OH are quiet right now, please PLEASE start early
 - check point for EC this SUNDAY 5/22

EX 5 due Friday
EX 6 (last ex) out Friday

2CSE 373 20 SP – CHAMPION & CHUN

Sorting

CSE 373 19 WI – KASEY CHAMPION 3

Where are we?

 This course is “data structures and algorithms”

 Data structures
-Organize our data so we can process it effectively

 Algorithms
-Actually process our data!

 We’re going to start focusing on algorithms

 We’ll start with sorting
-A very common, generally-useful preprocessing step
-And a convenient way to discuss a few different ideas for designing algorithms.

CSE 373 19 SU - ROBBIE WEBER 4

Types of Sorts

5

 Niche Sorts aka “linear sorts”

 Leverages specific properties about
the items in the list to achieve faster
runtimes

 niche sorts typically run O(n) time

 For example, we’re sorting small
integers, or short strings.

 In this class we’ll focus on comparison
sorts

CSE 373 18 SP – KASEY CHAMPION

Sorting Goals

6

 Stable sort

 A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

 Why do we care?
-“data exploration” Client code will want to sort by multiple features and

“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

 Speed

 Of course, we want our algorithms to
be fast.

 Sorting is so common, that we often
start caring about constant factors.

CSE 373 18 SP – KASEY CHAMPION

SO MANY SORTS

 Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort,
cubesort, shell sort, bubble sort, binary tree sort, cycle
sort, library sort, patience sorting, smoothsort, strand
sort, tournament sort, cocktail sort, comb sort, gnome
sort, block sort, stackoverflow sort, odd-even sort,
pigeonhole sort, bucket sort, counting sort, radix sort,
spreadsort, burstsort, flashsort, postman sort, bead
sort, simple pancake sort, spaghetti sort, sorting
network, bitonic sort, bogosort, stooge sort, insertion
sort, slow sort, rainbow sort…

7CSE 373 18 SP – KASEY CHAMPION

Goals

 Algorithm Design (like writing invariants) is more art than science.

 We’ll do a little bit of designing our own algorithms
-Take CSE 417 (usually runs in Winter) for more

 Mostly we’ll understand how existing algorithms work

 Understand their pros and cons
-Design decisions!

 Practice how to apply those algorithms to solve problems

CSE 373 19 SU - ROBBIE WEBER 8

Algorithm Design Patterns

 Algorithms don’t just come out of thin air.

 There are common patterns we use to design new algorithms.

 Many of them are applicable to sorting (we’ll see more patterns later in the quarter)

 Invariants/Iterative improvement
-Step-by-step make one more part of the input your desired output.

 Using data structures
-Speed up our existing ideas

 Divide and conquer
-Split your input

-Solve each part (recursively)

-Combine solved parts into a single

CSE 373 19 SU - ROBBIE WEBER 9

Principle 1

CSE 373 19 SU - ROBBIE WEBER 10

Selection Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

11

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

12

public void selectionSort(collection) {
 for (entire list)
 int newIndex =
findNextMin(currentItem);
 swap(newIndex, currentItem);
}
public int findNextMin(currentItem) {
 min = currentItem
 for (unsorted list)
 if (item < min)
 min = currentItem
 return min
}
public int swap(newIndex, currentItem) {
 temp = currentItem
 currentItem = newIndex
 newIndex = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

CSE 373 18 SP – KASEY CHAMPION

Selection Sort Stability

13CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

14

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort

15

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

public void insertionSort(collection) {
 for (entire list)
 if(currentItem is smaller than largestSorted)
 int newIndex = findSpot(currentItem);
 shift(newIndex, currentItem);
}
public int findSpot(currentItem) {
 for (sorted list going backwards)
 if (spot found) return
}
public void shift(newIndex, currentItem) {
 for (i = currentItem > newIndex)
 item[i+1] = item[i]
 item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Yes

Yes

CSE 373 18 SP – KASEY CHAMPION

Insertion Sort Stability

16CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
- All swaps happen between

adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be
compared against one another in
their original orientation, thus it
can be maintained with proper if
logic

Principle 2

CSE 373 19 SU - ROBBIE WEBER 17

Heap Sort

 1. run Floyd’s buildHeap on your data

 2. call removeMin n times

18

public void heapSort(input) {
 E[] heap = buildHeap(input)
 E[] output = new E[n]
 for (n)
 output[i] =
removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 18 SP – KASEY CHAMPION

If we get
clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In Place Heap Sort

19

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 18 SP – KASEY CHAMPION

In Place Heap Sort

20

public void inPlaceHeapSort(input) {
 buildHeap(input) // alters original array
 for (n : input)
 input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

CSE 373 18 SP – KASEY CHAMPION

