4 v
e S

¢ S0,
O il

n

Lecture 22: Introduction to | wow e

Algorithms

Sorting

Administrivia

Project 4 due wed 6/1
- OH are quiet right now, please PLEASE start early
- check point for EC this SUNDAY 5/22

EX 5 due Friday
EX 6 (last ex) out Friday

=

Sorting

INEFFECTIVE SORTS

DEFINE. HALPHEARTED MERGESORT (LiST):
IF LENGH(LIST) < 2:
RETORN LST
PIVOT = INT (LENGTH(LIST) / 2)
A= mfﬂmrwrmﬁsokr(usr[:ﬂmjg
B = HALFHEARTEDMERGE.SORT (LSt [PvoT:]
/1 OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMZED BOGOSORT
// RONS N O(N LoGN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE (LiST):
IF 1SS0RTED (LIST):
REORN LisT
RETURN “KERNEL PAGE FRULT™ (ERROR (ODE: 2)°

DEFNE JOBINERAEWQUICKSORT(LIST):
0K 50 YOU CHOOSE. A PVET
THEN DIVIDE THE [IST IN HALF
FOR EACH HALF:
(CHECK T SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PIVOT
THE BIGGER ONES GO IN ANEBJ LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND ST
CALL IT LS, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSNVELY CAUS TSELF
UNTIL BOTH LS5 ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED B USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [5SORTED (LiST):
REURN LIST
FOR N FROM 1 T 10000:
PIVOT = RANDOM (0, LENGTH(L15T))
LsT = ust [Pvor: 1+ LISt :PivoT]
IF I5S0RTED(LIST):
RETURN UST
IF ISSORTED(WST):
RETURN UST:
IF 1SSORTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF 15SORTED (L1ST): // COME ON COME ON
REURN UST
/| OH JEEZ
/l T GONNA BE IN 50 MuCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /%)
SYSTEM (“RM -RF ~/#")
SystEM (“RM -RF /")
SYSTEM(RD /5 /Q C:**) //PORTABILITY
RETORN [1,2, 3,4, 5]

Where are we?

This course is “data structures and algorithms”

Data structures
Organize our data so we can process it effectively

Algorithms

Actually process our datal

We're going to start focusing on algorithms

We'll start with sorting
A very common, generally-useful preprocessing step
And a convenient way to discuss a few different ideas for designing algorithms.

Types of Sorts

Comparison Sorts
Compare two elements at a time

General sort, works for most types of
elements

What does this mean? compareTo() works
for your elements

And for our running times to be correct, compareTo
must run in 0(1) time.

Niche Sorts aka “linear sorts”

Leverages specific properties about
the items in the list to achieve faster
runtimes

niche sorts typically run O(n) time

For example, we're sorting small
integers, or short strings.

In this class we’'ll focus on comparison
sorts

Sorting Goals

In Place sort

A sorting algorithm is in-place if it allocates O(1) extra memory Speed

Modifies input array (can't copy data into new array) Of course, we want our algorithms to
be fast.

Useful to minimize memory usage
Sorting is so common, that we often

Stable sort
start caring about constant factors.

A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

Why do we care?
“data exploration” Client code will want to sort by multiple features and
“break ties” with secondary features

[(8’ llfoxll)’ (9’ Ildog”)’ (4’ ”WOIf”)’ (8’ “COW")]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)] | Stable

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]| Unstable

SO MANY SORTS

Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort,
cubesort, shell sort, bubble sort, binary tree sort, cycle
sort, library sort, patience sorting, smoothsort, strand
sort, tournament sort, cocktail sort, comb sort, gnome
sort, block sort, stackoverflow sort, odd-even sort,
pigeonhole sort, bucket sort, counting sort, radix sort,
spreadsort, burstsort, flashsort, postman sort, bead
sort, simple pancake sort, spaghetti sort, sorting
network, bitonic sort, bogosort, stooge sort, insertion
sort, slow sort, rainbow sort...

Coals

Algorithm Design (like writing invariants) is more art than science.

We'll do a little bit of designing our own algorithms
Take CSE 417 (usually runs in Winter) for more

Mostly we’'ll understand how existing algorithms work

Understand their pros and cons
Design decisions!

Practice how to apply those algorithms to solve problems

Algorithm Design Patterns

Algorithms don't just come out of thin air.
There are common patterns we use to design new algorithms.

Many of them are applicable to sorting (we’'ll see more patterns later in the quarter)

Invariants/Iterative improvement
Step-by-step make one more part of the input your desired output.

Using data structures
Speed up our existing ideas

Divide and conquer
Split your input
Solve each part (recursively)
Combine solved parts into a single

Principle 1

Invariants/Iterative improvement
Step-by-step make one more part of the input your desired output.

We'll write iterative algorithms to satisfy the following invariant:

After k iterations of the loop, the first k elements of the array will be sorted.

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort _—
N

2 3 6 7 18 10 14 9 11 15
\ l \ 1>]
! L L
Sorted Items Unsorted Items
Current Iltem
2 3 6 7 9 10 14 18 11 15
\ J \
| |
Sorted Items Unsorted Items
Current Item
2 3 6 7 9 10 14 18 11 15
\ J \ J
| |
Sorted Items Unsorted Items

Current ltem

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

P

N

18

10

14 9 11

15

|

Sorted Items

Current ltem

public void selectionSort(collection) {
for (entire 1list)
int newlIndex =
findNextMin (currentItem) ;
swap (newIndex, currentlItem);
}
public int findNextMin (currentlItem) {
min = currentItem
for (unsorted list)
if (item < min)
min = currentItem
return min
}
public int swap(newlIndex, currentlItem)
temp = currentltem
currentItem = newlndex
newlIndex = currentlItem

{

|

Unsorted Items

Worst case runtime? @(n?)
Best case runtime? 0(n?)
In-practice runtime? @(n?)
Stable? No

In-place? Yes

Selection Sort Stability

5a 5b 2 6 8
2 5b 5a 6 8
2 5b 5a 6 8

*Swapping non-adjacent items can result in instability of sorting algorithms

Insertion Sort

https://www.youtube.com/watch?v=R0alU379I3U

4 10 2 8

|

Sorted Items

Current Iltem

|

Unsorted Items

3 5 4 10 2 8
J \ J
| |
Sorted Items Unsorted Items
Current Ite
3 5 4 10 2 8

Sorted Items

|

Unsorted Items
Current ltem

https://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort T~

|

Sorted Items

public void insertionSort(collection) {
for (entire list)
if (currentItem is smaller than largestSorted)
int newIndex = findSpot (currentlItem);
shift (newIndex, currentlItem);
}
public int findSpot (currentItem) ({
for (sorted list going backwards)
if (spot found) return
}
public void shift (newIndex, currentItem) ({
for (i = currentItem > newlIndex)
item[i+1] = item[i]
item[newIndex] = currentItem

Current ltem

Worst case runtime?
Best case runtime?
In-practice runtime?

Stable?

In-place?

|

Unsorted Items

0(n2)
O(n)
o(n?)

Yes

Yes

Insertion Sort Stability

v

Insertion sort is stable

- All swaps happen between

;] adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be

$] compared against one another in

their original orientation, thus it

5a 3 4 5b 2 6 8

5a 3 4 5b 2 6 8

can be maintained with proper if
3 5a 4 5b 2 6 8 logi
ogic
v/
3 4 5a 5b 2 6 8

Principle 2

Selection sort:

After k iterations of the loop, the k smallest elements of the array are (sorted) in indices
0,.. k—1

Runs in ®(n?) time no matter what.

Using data structures
Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item remaining
in our dataset...

We do!

Heap Sort

1. run Floyd'’s buildHeap on your data

2. call removeMin n times

https://www.youtube.com/watch?v=Xw2D9aJRBY4

public void heapSort (input) {
E[] heap = buildHeap (input)

E[] output = new E[n]
for (n)
output[i] =

removeMin (heap)

}

Worst case runtime?
Best case runtime?
In-practice runtime?
Stable?

In-place?

O(nlogn)
o(n)
O(nlogn)
No

If we get
clever...

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In PIW

1 4 2 14 15 18 16 17 20

22

Heap
Current ltem

|
]

Sorted Items

22 4 2 14 15 18 16 17 20 1
L_4 — A v ;
I_I percolateBewn(Z2) ~ Heap Sorted Items
Currew
2 4 16 14 15 18 22 17 20 1
\ \ J
| !
Heap Sorted Items

Current ltem

In Place Heap Sort

15 17 16 18 20

22 14 4 2

Heap
Current Item

public void inPlaceHeapSort (input) {
buildHeap (input) // alters original array
for (n : input)
input[n — i - 1] = removeMin (heap)

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards (0(n))

- Use a max heap

- Reverse compare function to emulate max heap

|

Sorted Items

Worst case runtime? @(nlogn)
Best case runtime? 0(n)
In-practice runtime? ©(nlogn)
Stable? No

In-place? Yes

