
Welcome to Lecture 6:
Functions as Data + Lambdas

Class will start at 10:10.

In the meantime, we will go around. Tell me your name,
where you’re from, & favorite mythical creature.

Today’s Topics

● Announcements

● Review

● List Scope

● Mutability vs Immutability

● Functions as input

● Lambdas

● Call, run, and rings in Snap!

Announcements

● Victoria’s OH is 6 to 7PM on Mon + Wed (Hybrid: online and in

soda-777)

● Victoria’s SUPPORT OH 7 to 8PM on Mon (Hybrid: online and in

soda-777)

● Computers: You can always use the computers in SDH-200, you will

sign into your account here:

https://acropolis.cs.berkeley.edu/~account/webacct/

● We are removing “duplicates” for Lab 4: Lists + Loops

○ So don’t worry if you didn’t get credit!

https://acropolis.cs.berkeley.edu/~account/webacct/

Review from Last Lecture

● Mutability vs Immutability

○ Mutability: Object can be changed after created

○ Immutability: Object CANNOT be changed after created

○ Lists are one of few data types that are mutable in Snap!

○ Only these functions can mutate a list:

Review from Last Lecture

● Higher Order Functions (HOFs)

○ Definition:

Review from Last Lecture

● Higher Order Functions (HOFs)

○ Definition: A function whose input is a function

○ Built in HOFs in Snap!:

○ But, we can make our own!

○ Do the Built-in HOFs, return new values/lists or modify the input

list?

Review from Last Lecture

● Higher Order Functions (HOFs)

○ Definition: A function whose input is a function

○ Built in HOFs in Snap!:

○ But, we can make our own!

○ Do the Built-in HOFs, return new values/lists or modify the input

list?

■ Return new values / list!

Review from Last Lecture

Performs a function on EACH
item in the input list. Will return
same size list.

Filters out items if the
conditions evaluates to true.
Will return less than or equal to
input list

Reduces input list based on
function by applying function
on all items. Didactic function!
Unintended behavior if less or
more than 2 inputs

Finds the first item from the list
where the condition evaluates
to true.

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Review from Last Lecture

Functions as Data

● We can make our own HOFs
● The input to our function will be a function!
● Example:

● Call function: Invokes ANY function with inputs dynamically (i.e. we
specify function and inputs at runtime)

● Must call function manually with “call” or “run” function

Functions as Data

● Why is “call” necessary?

Functions as Data

● Why is “call” necessary?

● Allows us to invoke the function

● Allows us to pass in inputs to function

Functions as Data

● Call Example

Build a Drawing HOF!

● Not very efficient

● Tedious if repeated

● Let’s generalize Draw
Square into a HoF.

https://snap.berkeley.edu/snap/snap.html#present:Username=jedi_force&ProjectName=DrawSquareStarter%2dHOFs&editMode&noRun
https://snap.berkeley.edu/snap/snap.html#present:Username=jedi_force&ProjectName=DrawSquareStarter%2dHOFs&editMode&noRun

Build a Drawing HOF!

Objective: Generalize square to draw any line type!

Build a Drawing HOF!

Objective: Generalize square to draw any line type!

Lambdas

● Defn: A temporary, anonymous function that disappears after use

● In Snap!, we denote lambdas by:

● We can also create temporary local variables for the lambdas:

● Lambdas create functions - but they’re not invoked / called!

● To invoke / call, we need:

OR

Guess that Output!

Guess that Output!

Guess that Output!

Guess that Output!

Guess that Output!

Guess that Output!

Guess that Output!

Guess that Output!

Evaluates to:
(6 * 6) > ((2 * 2) + 6)
 (36) > ((4) + 6)
 (36) > (10)
 true

Guess that Output!

Guess that Output!

Evaluates to:
 2 * (if (10 > 5) then (10 - 2) else (10 + 1))
 2 * (if (true) then (8) else (11))
2 * (8)
16

Build that Function!

● Objective: Create the map block from scratch. You should be invoking

a function on every item from a list. Do this without using map.

Instead, use iteration!

Build that Function!

Build that Function!

● Objective: Create the keep block from scratch. You should be invoking

a function on every item from a list. Do this without using map.

Instead, use iteration!

Build that Function!

●

Build that Function!

● Objective: Create the combine block from scratch. You should be

invoking a function on every item from a list. Do this without using

map. Instead, use iteration!

Build that Function!

