
Coroutines

Some Motivation
We would like to write a program that:

● Continually reads text from one file
● Continually writes this text to another file

We can define two functions:
● One which produces text from an input file (producer)
● One which consumes this text and prints it to an output file (consumer)

How do these two functions communicate?

Coroutines
Thread-like, but not concurrent

Collaborative: Transfer control between each other

yield: Suspend execution until resume is called

resume: Resume execution until next yield or end

Yield and resume can exchange data with each other

Producers and Consumers in Lua
function producer ()
 return coroutine.create(function () -- create a new coroutine
 while true do -- can also loop on another condition, etc.
 local value = produce() -- produce the value (e.g., read from a file)
 coroutine.yield(value) -- suspend execution until resumed, passing the value
 end
 end)
end

function consumer(prod)
 while true do
 local status, value = coroutine.resume(prod) -- resume execution of the producer, getting the value
 consume(value) -- consume the value (e.g., write to a file)
 end
end

Iterators
An iterator is just a producer, and the loop body is the consumer

No need to worry about maintaining state between calls to the iterator

Can also compose iterators:
● Traverse two data structures in a synchronized way
● Encapsulate the state

Example: Merge two binary search trees

Merge Two BSTs: Example
function inorder(node) -- produce values via inorder traversal of a tree
 if (node)
 inorder(node.left)
 coroutine.yield(node.key) -- suspend until next iteration, passing the node key
 inorder(node.right)
 end
end

function iterator(tree)
 local prod = coroutine.create(function(t) -- the producer coroutine
 inorder(t)
 end)
 return function()
 local status, key = coroutine.resume(prod, tree) -- resume execution of the producer, getting the value
 return key -- return the key to be consumed by the caller
 end
end

How might we build an iterator to merge two BSTs from this?

Merge Two BSTs: Producing Values
function merge(t1, t2) -- produce values by merging two trees
 local it1 = iterator(t1)
 local it2 = iterator(t2)
 local v1 = it1()
 local v2 = it2()
 while (v1 || v2) do
 if (v1 != nil and (v2 == nil or v1 < v2)) then
 coroutine.yield(v1) -- suspend until next iteration, passing key from t1
 v1 = it1() -- iterate t1
 else
 coroutine.yield(v2) -- suspend until next iteration, passing key from t2
 v2 = it2() -- iterate t2
 end
 end

function mergeTreeIterator(t1, t2)
 -- … -- what might this look like?
end

