

RAPHAELL MARQUES

DISCIPLINA:

OFICINA DE MATEMÁTICA

PROBLEMAS ENVOLVENDO TRIÂNGULOS RETÂNGULOS

30/03/2022

Roteiro de Aula

- Produtos Notáveis
- Teorema de Pitágoras

Produto da soma pela diferença

$$a^2 - b^2 = (a + b).(a - b)$$

Quadrado da soma

$$(a+b)^2 = a^2 + 2.a.b + b^2$$

Quadrado da diferença

$$(a - b)^2 = a^2 - 2.a.b + b^2$$

EXEMPLO 1

a)
$$(a - 2)^2$$

b)
$$(b + 3)^2$$

EXEMPLO 1

a)
$$(a - 2)^2$$

EXEMPLO 1

a)
$$(a - 2)^2$$

$$= a^2 - 2$$
. a. $2 + 2^2 = a^2 - 4a + 4$.

b)
$$(b + 3)^2$$

EXEMPLO 1

a)
$$(a - 2)^2$$

b)
$$(b + 3)^2$$

Produtos Notáveis

a)
$$(a - 2)^2$$

$$= a^2 - 2$$
. a. $2 + 2^2 = a^2 - 4a + 4$.

b)
$$(b + 3)^2$$

$$\Rightarrow$$
 = $b^2 + 2 \cdot b \cdot 3 + 3^2 = b^2 + 6b + 9.$

Veja como Pedro utilizou a ideia de produtos notáveis para calcular o quadrado de 41:

$$41^2 = (40 + 1)^2 =$$
 $= 40^2 + 2.40.1 + 1^2$
 $= 1600 + 80 + 1$
 $= 1681$

- a) 12²
- b) 61^2
- c) 33^2
- $d) 92^2$

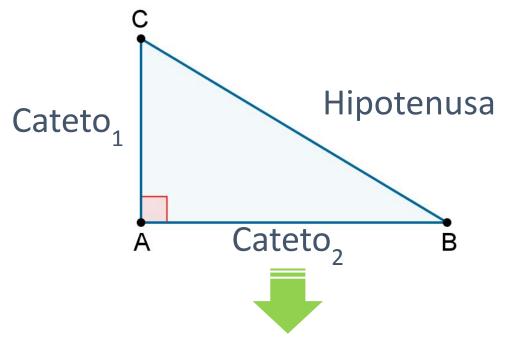
- a) 12²
- b) 61^2
- c) 33^2
- d) 92^2

- a) 12²
- b) 61^2
- c) 33^2
- d) 92²



- a) 12²
- b) 61^2
- c) 33^2
- d) 92^2


- a) 12²
- b) 61^2
- c) 33^2
- d) 92²



1. Teorema de Pitágoras

Teorema: O quadrado da hipotenusa é igual a soma dos quadrados dos

catetos.

$$(Cateto_1)^2 + (Cateto_2)^2 = (Hipotenusa)^2$$