
Grails REST + Spine.js
Decoupling Grails and Front End Apps



Who are we?

Aaron Eischeid
● Lead Developer at GlobalVetLINK
● @aeischeid

Craig Atkinson
● Sr. Consultant at Object Partners, Inc.
● craig.atkinson@objectpartners.com



Web trends

The rise of Web Services
you're not cool if you don't have an API

Pages are becoming Applications
HTML5

Javascript is 'fast' now 
opening the door to using it like a 'real' programming language



Benefits of using web services

Adding what others have done well into your 
application via web services

Ex. Google Maps, Amazon S3

Data portability between web applications



Web services technologies

Several technologies for web services
REST, SOAP, RPC, etc.

Many popular web services use REST
Google, Twitter, GitHub



What is a REST API?

Interact with application via HTTP requests
GET, POST, etc.

Endpoint URLs for specific actions
GET statuses/retweeted_by_me



Client/server web app with REST

Combine front-end JavaScript app with 
back-end web application

Communicate via JSON REST API



HTML PAGE/App

What is client side MVC?

controller model

view

HTML view (gsp)

modelcontroller

services

H
T
T
P



Client-side state benefits

Web app "feels" more like native app

Remove standard wait for request-response 
cycle

Especially long in mobile

The door is open for 'offlining' your web app

http://www.alistapart.com/articles/application-cache-is-a-douchebag/


Eating own dogfood

JavaScript front-end apps use same REST API 
as third parties

API in core of application, not afterthought



JavaScript front-end app

Non-blocking interface (async UI)

Models live on client and server
Persistence via Ajax or LocalStorage

Elegant client-side event binding and 
management



New object round trip

Client

Server

● Client ID
● POST params

● Server ID
● Saved params



What is Spine?

"...the first JS MVC-type library that hasn't 
made me want to slam my hand into a drawer" 

-Graham Ballantyne on the spine group mailing list

● Convention over configuration
● Uses a developer friendly language (or not...)

similar to... 
http://www.spinejs.com/

http://www.spinejs.com/


Spine vs. ... vs. ???

Frontend frameworks popping up all over.

Great comparison project using todo apps

Decoupling means less lock in!
Spine is currently one of the best in our opinion, but if 

tomorrow some new awesomeness arises we can move to 
that so long as it adapts to our API

http://todomvc.com/


Spine preprocessors

CoffeeScript -> JavaScript

Stylus -> CSS

Eco Templates...



CoffeeScript

JavaScript's better dressed more friendly 
alter-ego?

Easy to learn - http://coffeescript.org/

Play - coffeeConsole Chrome extention

http://coffeescript.org/
https://chrome.google.com/webstore/detail/ladbkfdlnaibelfidknofapbbdlhadfp?hl=en-US


Stylus

Similar to LESS or ...

Semicolons can still be friends ;)
or not...

Variables, inheritance, oh my!
easy to learn
http://learnboost.github.com/stylus/

http://learnboost.github.com/stylus/


Eco Templates

The views!

Use Coffescript

Syntax similar to ERB

https://github.com/sstephenson/eco

https://github.com/sstephenson/eco


JavaScript Testing

Mucho rapido!!!
so fast to run you might actually write them?!

Jasmine
http://pivotal.github.com/jasmine/
http://evanhahn.com/?p=181

http://pivotal.github.com/jasmine/
http://evanhahn.com/?p=181


Compiling...



Hem!

A node.js package

Makes developing with preprocessors painless

Optimizes production CSS/JS 

Can even write tests in Coffescript!



Using hem

Running
hem server -> grails run-app
localhost:9294 - > localhost:8080

Testing
hem server -> grails test-app
localhost:9294/test  -> 
file://.. 
..GrailsProject/target/test-reports/html/index.html

Deploy
hem build   -> grails war



or not...

At the end of the day Spine is just javascript 
and css, so you can chose to leave behind or 
replace some or all of the pieces. 

For example: 
Use whatever frontend templating solution 
you want. 

including .gsp's! (theoretically...) 



Grails REST API

Server-side persistence and processing for 
JavaScript front-end app

Basic CRUD functions + custom API actions



Scaffolding

Grails generates dynamic, scaffolded code and 
views based on domain classes

Scaffolded controller useful place for domain 
class CRUD actions



Parent controller

Common parent controller provides basic 
CRUD operations

RESTful controllers extend and/or customize 
default actions



DRY REST API

Generic controller code for CRUD API for 
domain classes 

Add custom, specialized API actions to expand 
on scaffolded CRUD actions



Map HTTP method -> Grails action

GET -> list(), show(id)
POST -> save()
PUT -> update(id)
DELETE -> delete(id)



Render JSON from Grails

Render JSON instead of HTML model/view

import grails.converters.JSON

class MyController {

  void myAction() {

    render myObject as JSON

  }

}



Customize JSON

Restrict which fields are returned in JSON
(or create new fields)

JSON.registerObjectMarshaller(MyObject) { 

  def jsonMap = [:]

  jsonMap.id = it.id

  jsonMap.firstName = it.first

  jsonMap.fullName = it.first + it.last

  return jsonMap

}



Render the right format

Render different formats from same controller 
action, based on client's format

void myAction() {

  def myObject = myService.findObject()

  withFormat {

    html  {

      render(view: "myView", model: [instance: myObject])

    }

    json {

      render myObject as JSON

    }

  }

}



API safety net

Functionally test REST API with Grails 
Functional Test Plugin

Tests quick to write and fast to run



JSON in functional tests

String jsonString = new JSON(

id: 1, 

firstName: "John", 

lastName: "Smith").toString()

JSONElement getParsedJsonElement() {

JSON.parse(response.contentAsString)

}



Decoupling deployment option

Grails backend deployed in application server
Tomcat, Jetty, etc.

Spine frontend deployed in webserver
Apache, Nginx

Frontend changes deployed without requiring 
app server restart



Frontend apps and GSPs coexist

Use frontend apps where they make sense, 
GSPs otherwise

Can add frontend apps into existing Grails 
apps



Conclusion

Integrating apps via API increasingly popular

Decoupling has many benefits
○ app performance (perception) and potential 

features
○ separate development and deployment
○ scalability

Grails & Spine.js: simple yet powerful app 
frameworks



Resources

Books

Articles
http://alexmaccaw.com/posts/async_ui
http://blog.alexmaccaw.com/rails-is-just-and-api-and-that-s-ok

http://www.aaideas.com/2012/04/19/grails-and-spine-js-decoupled-development-setup/
http://www.aaideas.com/2011/11/22/customized-grails-controller-for-rest/

http://alexmaccaw.com/posts/async_ui
http://blog.alexmaccaw.com/rails-is-just-and-api-and-that-s-
http://www.aaideas.com/2012/04/19/grails-and-spine-js-decoupled-development-setup/
http://www.aaideas.com/2011/11/22/customized-grails-controller-for-rest/


What is Disc Golf?

fun!  :)

http://www.pdga.com/introduction


Demo App

Source:
https://github.com/aeischeid/DgScorecard

Deployed:
DgScorecard

API:
gDoc spreadsheet

https://github.com/aeischeid/DgScorecar
http://severe-rain-3399.herokuapp.com
https://docs.google.com/spreadsheet/ccc?key=0AjPjkWNzCWm5dDZ2aGYxSkVvdmJoN1ZyUVp5VDdsanc

