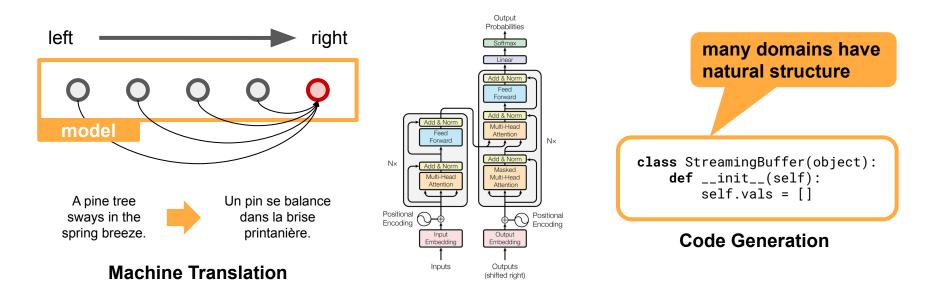
Discovering Non-Monotonic Autoregressive Orderings with Variational Inference

Xuanlin Li^{1*}, Brandon Trabucco^{1*}, Dong Huk Park¹, Michael Luo¹, Sheng Shen¹, Trevor Darrell¹, Yang Gao²

1: UC Berkeley 2: Tsinghua University

Non-Monotonic Sequence Generation



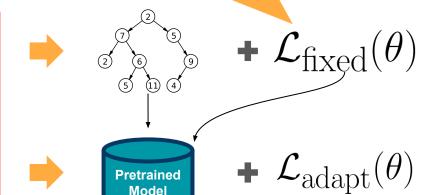
Problem Statement: Given a sequence generation dataset, find the *generation order* that most *naturally* describes the data.

Discovering Generation Orders

choosing the right loss function

Suppose we know in advance the right generation order.

Suppose we know a generation order that can be fine-tuned.



Can we find a natural generation order efficiently without domain-specific knowledge?

often must be domain-specific

Yes: Our approach, Variational Order Inference (VOI), does exactly this!

Variational Order Inference

natural

highly probable to co-occur with y

 \mathcal{X}

- input variable (such as an image)

y

- target sequence

z

- generation order of y

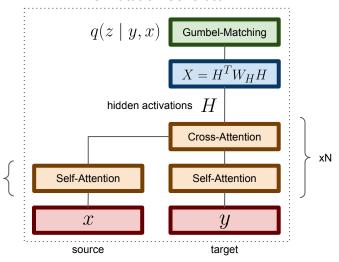
$$q(z \mid y, x) = \frac{\exp\langle X, P = z \rangle_F}{\operatorname{perm}(\exp(X))}$$

xΝ

$$\max_{\theta} \mathbb{E}_{y,x}[\log p_{\theta}(y \mid x)] \ge$$

$$\max_{\theta} \max_{q} \mathbb{E}_{y,x,z \sim q(z \mid y,x)}[\log p_{\theta}(y,z \mid x)] + \mathcal{H}(q)$$

Permutation Generator



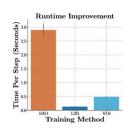
Approximate density with Bethe permanent

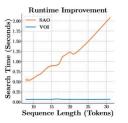
Results

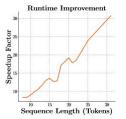
Order	MS-COCO				Django		Gigaword			WMT16 Ro-En		
	BLEU	Meteor	R-L	CIDEr	BLEU	Accuracy	R-1	R-2	R-L	BLEU↑	Meteor†	TER.
InDIGO - SAO 1	29.3	24.9	54.5	92.9	42.6	32.9	_	_	_	32.5	53.0	49.0
Ours - Random	28.9	24.2	55.2	92.8	21.6	26.9	30.1	11.6	27.6	100000	54.0000000	
Ours - L2R	30.5	25.3	54.5	95.6	40.5	33.7	35.6	17.2	33.2	32.7	54.4	50.2
Ours - Common	28.0	24.8	55.5	90.3	37.1	29.8	33.9	15.0	31.1	27.4	50.1	53.9
Ours - Rare	28.1	24.5	52.9	91.4	31.1	27.9	34.1	15.2	31.3	26.0	48.5	55.1
Ours - VOI	31.0	25.7	56.0	100.6	44.6	34.3	36.6	17.6	34.0	32.9	54.6	49.3

- Better performance than fixed generation orders.
- Training is highly efficient and readily parallelizable.
- Prioritizes descriptive tokens first, modifier tokens last.

Example Generation: COCO 2017







Time Complexity of SAO: $O(Ndl^3)$ Time Complexity of VOI: $O(NKdl^2)$

For more details read our paper and check out our poster.