Towards a sizing model for the Rubin/DESC analysis at CC-IN2P3

Fall 2023 – CC-IN2P3, Lyon

Recap of last episode: spring survey

Activity in DESC WGs now

- "Interested but inactive" in various WGs
- Uncertainty in computing needs for "science" (data and cpu)

This otter doesn't care about the computing requirements.

Why should you?

Context

What we know

- CC-IN2P3 will host the full dataset of raw images for archiving
- IN2P3 to fund 40% of Rubin Data Release Processing (DRP) at CC-IN2P3, to be merged at SLAC (USDF) into full release
- "Best effort" approach for (DESC) science analysis deemed insufficient at last "Evaluation annuelle projet" (EAP) to guarantee scientific return

What we need

• A *science-driven* proposal for a reasonable analysis model to guide CC allocation for LSST and infrastructure developments (software and hardware). *We need your input!*

This session

Goals

- 1. Start a discussion!
- 2. Identify critical components to complete "main" science goals (3x2+CL+SN)
 - Including simulations and intermediate products (i.e. not just final run)
 - Numbers needed are storage (PB), computing (Mcpu-h) and machine needs (GPUs? Large-memory? Infiniband? vs standard MPI nodes)
- 3. Identify other potential datasets/processing needed in the broader LSST-France community.

Outline

- 1. Report of estimations and ongoing discussion between LSST-France scientific coordinators and CC staff (lots of work done by Dominique)
- 2. Discussion with everyone!

From Rubin data to static cosmology

A worked example for 3x2+CL, DESC work includes:

- Generating and validating catalogs of source/lens/cluster/photoz
- Validating models and analysis choices on simulations
- 3. Validating and running cosmological inference

Rubin

From Rubin data to static cosmology: storage

• DESC static catalogs (~ year 10)

	Lens	Cluster	Shear	photo-z
Nbr. of rows	3.10 ⁸	3.105	3.10° * 5 versions	3.10° * 5 versions
Nbr of columns	300 floats	300 floats	300 floats	200 bytes
Total Size	660 GB	0.3 GB	18 TB	3 ТВ

- Several versions needed, so O(100s) TB
- In comparison, DES DR2 = 3.1 TB
- DESC data vectors
 - 2pt functions + n(z)'s + covariance + metadata (eg, masks) represent < 1TB

From Rubin data to static cosmology: computing

- DESC computing model at NERSC: O(25M) CPU core hours + O(10k) GPUs
- Estimation of DESC computing needs:
 - a. Image simulations for WL calibration
 - For DES Y3, O(1M) core hours.
 - b. Synthetic source injection
 - Re-processing of raw images for photo-z, WL calibration and LSS systematics, O(1M) core hours
 - c. Catalogs to *summary statistics*
 - TXPipe run ~ O(10k) core hours, several runs to optimal configuration.
 - d. Model validation and inference
 - For DES Y3 3x2, ~1000 MCMC chains, each O(10k) core hours; CL integrals?
- So overall, **DESC 3x2+CL ~ O(10M) core hours**

From Rubin data to SN cosmology

- Storage
 - Actual cosmology data vectors are not large (few TB).
 - What about transient catalogs (DIASRC, DIAOBJ) from DRP?
 - We probably will need to go back to pixel level to develop tools
 - Scene modeling, uniformity (uber)-calibration, maybe even instrument removal (detrending)
 - Will need image data (raw*, calexp, calibration[?])
 - Will need catalogs (refcats and rubin star catalogs)
 - Hope is to then push these tools to DM to run in next DR.
 - One solution would be to train on DDF (\sim 7% of images)
 - ~500TB/yr for calexp (or own calibrated data) x nb_of_version

* Should already be on disk at CC.

[?] Are they already at CC in current plan?

From Rubin data to SN cosmology

- Computing (mostly scaled from ZTF)
 - Scene modelling will need something like 1 core-week per SN on small machines (~10GB) \rightarrow ~O(10M clockhours) for one 10yr prod.
 - Ubercalibration would need **hugemem** machines
 - Cosmo: w and forward fs8 will probably need **GPUs** (jax)
 - Maximum likelihood fs8 would need **hugemem** machines
 - Detrending (ISR) is massively // (GPUs or many cpus)

Discussion: data sets

DRP--

Data set	Size (Y1 \rightarrow Y10)	Availability at CC-IN2P3	
Raw images	5 PB → 50 PB	Full (archiving) via Butler	
Individual exposures (calexps)	6 PB → 67 PB	On demand for pre-identified fields (SN/transients) ?	
Co-added images (coadds)	2.7 PB	Full via Butler	
Alert streams	$1TB/night \rightarrow 3 PB$	Full (guaranteed for FINK)	
Rubin DRP catalogs	$1 \text{ PB} \rightarrow 9 \text{ PB*}$??	
DESC catalogs + metadata (masks) + data vectors	< 1 PB	Full via DESC tools (GCR, TXPipe)?	
Extra: simulations, precursor, spectro	??	Sims ~ 150 TB (DC2+skySim5000+buzzard) Reference catalogs ~ 2 TB (Gaia, SDSS, Panstarrs)	

* direct access to parquet files *without* Qserv – otherwise, 3 PB \rightarrow 27 PB

Discussion: computing

- Rubin DRP computing at CC-IN2P3
 - Allocation 2023 ~ 48 M core hours / year
 - Full DRP = $40M \rightarrow 400M$ cpu hours (<u>https://dmtn-135.lsst.io/</u>, table 25), 40% to be done at CC
- DESC 3x2+CL+SN analysis at CC-IN2P3
 - Participation to computationally expensive systematics calibration efforts (e.g. SSI, image sims for WLSS/CL) ~ O(few 1M) cpu hours?
 - Validation efforts + final runs ~ also O(few 1M) cpu hours?
 - DESC analysis to be distributed across facilities, including NERSC, which means moving data products around: scp/globus tools needed.

Discussion: what else?

- What about your analysis?
 - What other data products do you need? What are your major computing needs?
 - Need an Rubin Science Platform (RSP) at CC for the broader community? Need Qserv?
- Proposal for DESC + other science analysis separated from proposal for DRP ?
 - Note: eventually, proposal in Mcpu-hours to be converted to € for IN2P3 (cost of cpu/storage decreases over 10 years...)

References

1. <u>Requirements for analysis</u> and references therein

- a. DESC Computing Model Update 2023
- b. Summary of (DESC) Data Management Principles
- c. LSST DESC Science Overview Document

