Adversarial Infill
<Names retracted for anonymity>
Image Infilling
Image Infilling
Approaches
Approaches
Project Goals
Exemplar-Based Inpainting
Exemplar-Based Inpainting
Deep Convolutional GANs
GAN Outputs
Approach
Input
Input + Mask
Generate
Infill
Model + Training
Infilling
Real or Fake
G
D
z
G(z)
Contextual Loss
G
z
G(z)
Perceptual Loss
Real or Fake
G
D
z
G(z)
Blending Loss
G
z
G(z)
Results
Input
Input + Mask
Generate
Infill
Infill - 1/5
Infill - 2/5
Infill - 3/5
Infill - 4/5
Infill - 5/5
Center Masks
Original
Masked
Result (no blending loss)
Result (with blending loss)
Random Masks
Beyond CelebA
Input
Input + Mask
Generate
Infill
Ricky Infill - 1/6
Ricky Infill - 2/6
Ricky Infill - 3/6
Ricky Infill - 4/6
Ricky Infill - 5/6
Ricky Infill - 6/6
Final Result
GIF
Next Steps
Thank you!
JUNK PICTURES
Results
Before
Results
Masked
Multi-Output Estimators
math