CARDIOVASCULAR SYSTEM

Module 11

FUNCTIONS OF BLOOD

TRANSPORTATION

- Respiration
- Nutrient carrier from GIT
- Transportation of hormones from endocrine glands
- Transports metabolic wastes

REGULATION

- Regulates pH
- Adjusts and maintains body temperature
- Maintains water content of cells

PROTECTION

- WBC protects against disease by phagocytosis
- Reservoir for substances like water, electrolyte etc.
- Performs haemostasis

Physical Characteristics of Blood

- Average volume of blood:
 - 5-6 L for males; 4-5 L for females (Normovolemia)
 - Hypovolemia low blood volume
 - Hypervolemia high blood volume
- Viscosity (thickness) 4 5 (where water = 1)
- The pH of blood is 7.35–7.45; x = 7.4
- Salinity = 0.85%
 - Reflects the concentration of NaCl in the blood
- Temperature is 38°C, slightly higher than "normal" body temperature
- Blood accounts for approximately 8% of body weight

COMPOSITION OF BLOOD

1. Blood

- a. 55% Plasma
 - i. 90% water
 - ii. 7% proteins (albumin, globulins, fibrinogen)
- iii. 3% ions, nutrients, waste, gases,
 regulatory chemicals
- b. 45% Formed elements
 - i. Erythrocytes (red blood cells) 95%
 - ii. Leukocytes & platelets 5%

About 5,000,000 per mm^3 of blood

Erythrocytes (Red Blood Cells)

- Main function is to carry oxygen
- Biconcave disks
- Essentially bags of hemoglobin; few organelles
- Anucleate (no nucleus)
- Outnumber white blood cells 1000:1
- Contain the plasma membrane protein spectrin and other proteins
- Major factor contributing to blood viscosity

Transport of CO_2 in the blood

There are 3 ways in which carbon dioxide is transported in the blood:

DISSOLVED CO2

About 5 % of carbon dioxide is transported unchanged, simply dissolved in the plasma

BOUND TO HAEMOGLOBIN

About 10 % of carbon dioxide is transported bound to haemoglobin. Carbon dioxide combines reversibly with haemoglobin to form carbamino-haemoglobin.

BICARBONATE IONS (HCO3-)

85% of carbon dioxide is transported in this way

(a) In body tissue

^{© 2001} Sinauer Associates, Inc.

Causes of Anemia

- Lack of required nutrients
- Loss of blood
- Chronic Disease
- Genetic Abnormalities
- Inadequate production of red blood cells

- 1. Larger than Erythrocytes
- 2. Can move on their own (amoeboid movement)
- 3. Variety of types of White Blood Cells

Diapedesis - passage of white blood cells through pores in blood vessel to get into tissue spaces where the do their work.

How do they "know" the tissue "needs" them?

Chemotaxis – Attraction of cells to chemical stimuli

Leukocytes white blood cells ~ WBC

agranular

lymphocytes 20 - 25 % monocyles 3 - 8%

T-cell, B-cell, NK Cell

granular

basophils .5 - 1%

neutrophils eosinophils 60 - 70% 2 - 4%

Blood Smear Stain

Basophils, Eosinophils, Lymphocytes (T cells and B cells), Monocytes, Neutrophils

Spare 4-7. Human Baod cells them a senser after Minjetti salar. A and D. Neurophilis Indexpense. B and E. Essengelise subscripts. C. Bisophilis: Isolocola: J. Pleane cells. Inis is not a normal considered of the perspective calculate free the recompanies with the rangebraich isolocoles. II and II, Sinal lymphosyses. J. Medium lymphosyses. J. Science J. Minneyres. Sci U.C.C.². Smear from Wright's stain

A & D : Neutrophilic B & E : Eosinophilic C : basophilic F : Plasma cell (not in blood) G & H : small lymphocytes I : medium lymphocytes J, K & L : monocytes

> Protégé Education Ceret L All rights reserved

5

WHITE BLOOD CELLS - GRANULOCYTES

- Contain vesicles filled with substances that stain easily - giving a grainy look to them
- 2. Three types
 - a. Neutrophil
 - b. Basophil
 - c. Eosionphil

WHITE BLOOD CELLS - AGRANULOCYTES

- Vesicles are smaller and not seen with a light microscope therefore have a less grainy appearance
- 2. Two Types
 - a. Lymphocyte
 - b. Monocyte

Neutrophils

- 1. Lobular nucleus
- 2. Less granules visible
- 3. First responders to infection via chemotaxis
- 4. Capable of phagocytosis

Phagocytosis - "cell eating" The process by which a cell engulfs and ingests a foreign or dead cell or dead parts

Pus - a mixture of dead or dying white blood cells, foreign cells such as bacteria, and fluid.

Basophils

- 1. Rarest granulocytes
- 2. Attracted to blue dye
- 3. Bi-lobed nucleus
- 4. Many granules
- 5. Increase during allergic reactions

How are Basophils involved in allergic reactions?

How are **Basophils** involved in allergic reactions?

1. Release histamine and heparin

- a. Histamines promote inflammation which stimulates the immune system
- b. Heparin prevents blood from clotting locally which allows the WBCs, antibodies and other immune factors to get to infection
- c. Eventually heparin is deactivated

Eosinophils

- 1. Uncommon
- 2. Bi-lobed nucleus
- 3. Lots of red staining granules
- 4. Also increase during allergic reactions
- 5. Decrease inflammation
- 6. Also increase during parasitic infections

Lymphocytes

- 1. Smallest WBC; just a little larger than RBC
- 2. Second most common leukocyte
- 3. Dark staining nucleus, little cytoplasm
- 4. Produce antibodies and other immune protection

Monocytes

- 1. Largest WBC
- 2. Uncommon in numbers
- 3. Kidney shaped nucleus and more cytoplasm than lymphocyte
- 4. Very Phagocytic Monster WBC!
- 5. Leave Blood via diapedesis and live in tissues and then are called macrophages

RED BLOOD CELLS: Transport oxygen and carbon dioxide WHITE BLOOD CELLS: **NEUTROPHILS &** Phagocytic cells; engulf debris and pathogens MONOCYTES: EOSINOPHILS: Phagocytic cells; engulf items coated in antibodies BASOPHILS: Stimulate inflammation in tissues by releasing histamine LYMPHOCYTES: Immune defence against specific pathogens, toxins, or foreign proteins PLATELETS: Participate in clotting response

HEMOPOIESIS

The process by which the formed elements of blood are made in the red bone marrow.

WHAT TYPE OF TISSUE IS BLOOD?

HEMOSTASIS

The process by which the body stops blood loss.

HEMOSTASIS

Three Stages

- 1. Vasoconstriction
- 2. Platelet plug formation
- 3. Coagulation

HEMOSTASIS: VASOCONSTRICTION STAGE

Local reflex to narrow the blood vessel in order to prepare it for repair. The more damage, the greater the constriction.

Hemostasis

- Second Platelet Plug Formation
 - 1) Platelet adhesion
 - platelets stick to exposed collagen
 - activates platelets
- 2) Platelet release reaction
 - platelets attach to other platelets
 - release granule contents (thromboxane A₂)
 - promote vasoconstriction, platelet activation and aggregation
- Platelet aggregation I platelet plug
 - blocks blood loss in small vessels
 - not as good in larger vessels

2 Platelet release reaction

3 Platelet aggregation

An example of a positive feedback mechanism.

The release of thromboxane (a PG derivitive) is important in initiating several chemical processes.

HEMOSTASIS: PLATELET PLUG (THROMBUS) STAGE

- 1. Good prevents blood loss
- 2. Bad
 - a. Coronary thrombosis heart attack
 - b. Embolus formed in legs and travels to heart, lungs, or brain

RESTING

ACTIVATED

Isolated Platelets

Fibrin Strands in a Blood Clot

HEMOSTASIS: COAGULATION STAGE

A cascade of chemical reactions with the ultimate goal of converting **fibrinogen to fibrin** which is a long fiber that doesn't dissolve in water.

Fibrin binds to platelets and traps RBCs forming a blood clot

HEMOSTASIS: COAGULATION STAGE

What are coagulation factors?

They are proteins in blood plasma that initiate the blood coagulation process.

Most of these factors are formed in the liver

Extrinsic Pathway

Tissue Damage releases Tissue Factors (lipoproteins/phospholipid)

Bind to Ca²⁺ and Factor VII to form

TF/Factor VII Complex

Activates Factor X

Activated Factor X + Factor V + Ca2+ + Phospholipids on platelet membrane

Leads to formation of **Prothrombinase**

Prothrombinase catalyzes the reaction that converts **prothrombin** to thrombin

Prothrombinase

Prothrombin

thrombin

- **Thrombin:** 1. Catalyzes the formation of fibrin from fibrinogen.
 - 2. Reacts with FV to make more Prothrombinase (increase thrombin and fibrin.
 - 3. Reacts with **FVIII** to make more **FXa** (increase thrombin/fibrin)
 - 4. Reacts with FXIII to activate FVIII to stabilize the clot.

Fibrin: 1. Makes long strands to form blood clot.

(a) Vasoconstriction

(b) Platelet aggregation

(c) Clot formation

COAGULATION CASCADE

Injury Occurs Injury to blood vessel results in bleeding. Vessel constricts and clotting factors are activated.

Normal

A stable fibrin clot forms over the platelet plug as a final seal on the injury, and the bleeding stops.

Hemophilia A

Lack of clotting factor VIII causes a weak platelet plug to form.

MEDICAL SLIDES

	Group A	Group B	Group AB	Group O
Red blood cell type		B	AB	
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	• A antigen	↑ B antigen	¶↑ A and B antigens	None

An antigen that is found on erythrocytes and indicated as positive if present and negative if not.

Dominant gene. Unlike other blood types, the antibody against the Rh factor isn't formed unless exposed to the antigen.

This can result in hemolytic disease of an unborn baby.

Rh Blood Group System

absent (-) Rh negative

🚍 Education Percui

1 Rh+ father.

2

Rh⁻ mother carrying her first Rh⁺ fetus. Rh antigens from the developing fetus can enter the mother's blood during delivery. In response to the fetal Rh antigens, the mother will produce anti-Rh antibodies.

3

If the woman becomes pregnant with another Rh⁺ fetus, her anti-Rh antibodies will cross the placenta and damage fetal red blood cells.

HEART

