+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Objectives for Today

m Last class, we covered mutually recursive and
nested recursive datatypes

m We then showed types and type checking

* Objectives for Today

m Last class, we covered mutually recursive and
nested recursive datatypes

m We then showed types and type checking

m Today, we will continue with types and type
checking, starting in a simply typed
(monomorphic) setting

m This will set the stage for work next week on
typing rules for a subset of OCaml

! Questions from Tuesday?

! Judgments, Systems, Derivations

* Reminder: Syntax

Premises

Conclusion

Judgments, Systems, Derivations)

* Reminder: Syntax

I like all chocolate truffles”

"I like Godiva chocolate truffles”

Judgments, Systems, Derivations i

* Reminder: Syntax

Premise 1 ... Premise n

Conclusion

Judgments, Systems, Derivations .

* Reminder: Syntax

Premises of Premises of
Premise 1 Premise n

Premise 1 ... Premise n

Conclusion

Judgments, Systems, Derivations ;

* Reminder: Syntax

Axiom

Judgments, Systems, Derivations N

* Reminder: Syntax

“other people are
conscious, too”

Judgments, Systems, Derivations .

* Reminder: Syntax

Axiom Axiom
Premise 1... Premise n

Conclusion

Judgments, Systems, Derivations .

* Reminder: Syntax

Axiom Axiom
Premise Premise
Conclusion Conclusion

Judgments, Systems, Derivations .

* Reminder: Syntax

syntax of judgment
should go in this box

Axiom Axiom
Premise Premise
Conclusion Conclusion

Judgments, Systems, Derivations N

* Reminder: Syntax

[ret:1 |
[+ true : bool [- false : bool
Premise Premise
Conclusion Conclusion

Judgments, Systems, Derivations N

* Reminder: Syntax

[+ true : bool [+ false : bool

[ret:1 |

[-tl:bool [+t2: bool
[+ t1 && t2 : bool

Judgments, Systems, Derivations .

! Type Checking

17

* A "Simple” (Monomorphic) Type System

| ret:17 |

Type Checking

* A "Simple” (Monomorphic) Type System

Axioms [rrt:T]

[+ true : bool [+ false : bool

Type Checking

* A "Simple” (Monomorphic) Type System

Axioms [rrt:T]

[+ true : bool [+ false : bool

[=n:int (for n integer constant)

Type Checking

* A "Simple” (Monomorphic) Type System

Axioms [rrt:T]

[+ true : bool [+ false : bool

[=n:int (for n integer constant)

v T (if F[(v) =T)

Type Checking

* A "Simple” (Monomorphic) Type System

Axioms [rrt:T]
CONST CONST

[+ true : bool [+ false : bool

CONST

[=n:int (for n integer constant)

VAR

v T (if F[(v) =T)

Type Checking

* A "Simple” (Monomorphic) Type System

Boolean Connectives [rrt:T |

[Ftl:bool [+1t2: bool
[+tl && t2 : bool

AND

Type Checking

* A "Simple” (Monomorphic) Type System

Boolean Connectives [rrt:T |

[Ftl:bool [+t2: bool
[+tl && t2 : bool

AND

Type Checking N

* A "Simple” (Monomorphic) Type System

Boolean Connectives [rrt:T |

[Ftl:bool [+t2: bool
[-t1 && t2: bool

AND

Type Checking

* A "Simple” (Monomorphic) Type System

Boolean Connectives [rrt:T |

[-tl:bool T Ft2: bool
[+tl && t2 : bool

AND

[-t1l:bool [+t2: bool
[-t1l || t2: bool

OR

Type Checking

* Example: Type Checking

[How do we check this?]

{bl : bool} + bl && false : bool

Type Checking

* Example: Type Checking

[Premises?]

ND

(b1 : bool} + bl & false : bool |

Type Checking

* Example: Type Checking

{bl : bool} + bl : bool {b1l : bool} + false : bool
{bl : bool} + bl && false : bool

AND

Type Checking

* Example: Type Checking

[How do we check this?] [How do we check this?]

{bl : bool} + bl : bool {b1l : bool} + false : bool
{bl : bool} + bl && false : bool

AND

Type Checking

* Example: Type Checking

[How do we check this?]

{b1 : bool} - bl : bool <{bi : bool} F false : bool
{bl : bool} + bl && false : bool

AND

Type Checking

* Example: Type Checking

CONST

{b1 : bool} - bl : bool <{bi : bool} F false : bool
{bl : bool} + bl && false : bool

AND

Type Checking

* Type Derivation

CONST

{b1 : bool} - bl : bool <{bi : bool} F false : bool
{bl : bool} + bl && false : bool

AND

Type Checking

! Questions so far?

34

! Type Variables

35

* Type Variables in Rules

Conditionals [r-t:T]

(if t1 then t2 else t3)

Type Variables :

6

* Type Variables in Rules

Conditionals [r-t:T]

[+t1 : bool
[+ (if t1 then t2 else t3)

Type Variables :

7

* Type Variables in Rules

Conditionals [r-t:T]

[+t1 : bool
[+ (if t1 then t2 else t3)

Type Variables :

8

* Type Variables in Rules

Conditionals [r-t:T]

[+t1 : bool
[+ (if t1 then t2 else t3)

m Can take any type at all

Type Variables :

9

* Type Variables in Rules

Conditionals [r-t:T]

[+t1 : bool
[+ (if t1 then t2 else t3)

m Can take any type at all

m The then branch, the else branch
must all have the same type

Type Variables .

0

* Type Variables in Rules

Conditionals [r-t:T]

[+t1 : bool
[+ (if t1 then t2 else t3)

m Can take any type at all

m The then branch, the else branch, and the final
term must all have the same type

Type Variables .

1

* Type Variables in Rules

Conditionals [r-t:T]

[Ftl:bool THE2:T T+t3: T
[F(iftlthent2elset3): T

m Can take any type at all

m The then branch, the else branch, and the final
term must all have the same type

Type Variables .

2

* Type Variables in Rules

Conditionals [r-t:T]

[Ftl:bool THE2:T T+t3: T
[F(iftlthent2elset3): T

m T is a type variable (metavariable)
m Can take any type at all

m The then branch, the else branch, and the final
term must all have the same type

Type Variables .

3

* Type Variables in Rules

Conditionals [r-t:T]

Ftl:bool THE2:T MT-t3: T
[F(ftlthent2elset3): T

T is a type variable (metavariable)
Can take any type at all
All instances in rule application must get same type

The then branch, the else branch, and the final
term must all have the same type

Type Variables .

4

* A "Simple” (Monomorphic) Type System

Conditionals [r-t:T]

Ftl:bool THE2:T MT-t3: T
[F(ftlthent2elset3): T

COND

T is a type variable (metavariable)
Can take any type at all
All instances in rule application must get same type

The then branch, the else branch, and the final
term must all have the same type

Type Variables .

5

* Question

Is this well typed?

?2??
{ b :bool }+ (if b then 5 else false) : ???

Type Variables .

6

* Question

Why is this well typed?

?2??
{ b :bool }F (if bthen 5 else 7) : int

Type Variables .

7

! Questions so far?

48

! Functions and Application

49

* Function Application

Function Application [r-t:T]

[Ff:T1>T2 T +-t1 :T1
[H(ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

Functions and Application -

* Function Application

Function Application [r-t:T]

F-f:T1->T2 [+t1 :T1
[H(ftl): T2

APP

m If you have a function f of type T1—-T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

Functions and Application n

* Function Application

Function Application [r-t:T]

M Ff:T1>T2 T FEl: TL
M F(Ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

Functions and Application -

* Function Application

Function Application [r-t:T]

[Ff:T1>T2 T +t1 : T1
[-(ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

Functions and Application -

* Function Application

Function Application [r=t:T]

F -f:T1-5T2 T 1 :T1
[H(ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

m Thatis, ftakesa T1 toa T2, so if you pass a
particular T1 (which we call t1) to f, you'll get a T2

Functions and Application N

* Function Application

Function Application [r=t:T]

[Ff:T1->T2 T 1 :T1
[H(ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

m Thatis, ftakesa T1 to a T2, so if you pass a
particular T1 (which we call t1) to f, you'll get a T2

Functions and Application .

* Function Application

Function Application [r=t:T]

M Ff:T15T2 T Ftl Tl
[F(ftl): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

m Thatis, ftakesa T1 to a T2, so if you pass a
particular T1 (which we call t1) to f, you'll get a T2

Functions and Application ,

* Function Application

Function Application [r=t:T]

[-f:T1>T2 I 1 : T1
[+(ftl1): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

m Thatis, ftakesa T1 to a T2, so if you pass a
particular T1 (which we call t1) to f, you'll get a T2

Functions and Application -

* A "Simple” (Monomorphic) Type System

Function Application [r=t:T]

Ff: T1>T2 T -t1 : T1
[+(ftl1): T2

APP

m If you have a function f of type T1—T2, and you
apply it to an argument t1 of type T1, the resulting
expression f t1 has type T2

m Thatis, ftakesa T1 to a T2, so if you pass a
particular T1 (which we call t1) to f, you'll get a T2

Functions and Application .

* A "Simple” (Monomorphic) Type System

Function Application [r-t:T]

F+f:T1>T2 I +t1 :T1
[H(ftl1): T2

APP

Functions

FUN

[Ffuntl ->t2 : T1-T2

Functions and Application S

* A "Simple” (Monomorphic) Type System

Function Application [r-t: T]
[-f: T1-T2 I 11 :T1 -
[+ (ftl): T2
Functions
L t1:T1

FUN

[Ffuntl ->1t2 : T1-T2

Functions and Application o

* A "Simple” (Monomorphic) Type System

Function Application [r-t:T]

F+f:T1>T2 I +t1 :T1
[H(ftl1): T2

APP

Functions

[Lt1:T1+-t2: T2
[Ffuntl ->t2 : T1-T2

FUN

Functions and Application N

* A "Simple” (Monomorphic) Type System

Function Application [r-t:T]

[f:T1-5T2 I Ht1 :T1
[H(ftl1): T2

APP

Functions
[Extending the type environment]

tL:T1HE2:T2
[Ffuntl >t2 : T1>T2

FUN

Functions and Application o

* A "Simple” (Monomorphic) Type System

Function Application [r-t:T]

[f:T1-5T2 I Ht1 :T1
[H(ftl1): T2

APP

Functions
[Extending the type environment]

{t1:T1}+TM+-t2:7T2
[Ffuntl >t2 : T1-T2

FUN

Functions and Application .

* A "Simple” (Monomorphic) Type System

Function Application [r-t:T]

[f:T1-5T2 I Ht1 :T1
[H(ftl1): T2

APP

Functions
[Extending the type environment]

tL:T1HE2:T2
[Ffuntl >t2 : T1>T2

FUN

Functions and Application N

* A "Simple” (Monomorphic) Type System

| ret:17 |

Rules describe types, but also how type environment
[may change. Can only do what rule allows!

Functions

EL:T1+-t2:T2
[Ffuntl->1t2 : T1->T2

FUN

Functions and Application -

* Fun Examples

[Ffuny->y+ 3 :int—int

Functions and Application N

* Fun Examples

[Ffuny->y+ 3 :int— int

Functions and Application o

* Fun Examples

[, y:iInt
[Ffuny->y+ 3 :int—int

FUN

Functions and Application o

* Fun Examples

[,y:intFy+ 3 :int
[Ffuny->y + 3 :int— iIint

FUN

Functions and Application .

* Fun Examples

[,y:intFy+ 3 :int
[~funy->y+ 3 :int—int

FUN

[This IS just one step of the derivation]

Functions and Application .

! Questions so far?

/1

! Let Expressions

72

* (Monomorphic) Let and Let Rec

| ret:17 |

let
[Ft1:T1 [,x:T1rE2:T2
[F(letx=t1lInt2): T2

LET

Let Expressions .

* (Monomorphic) Let and Let Rec

| ret:17 |

let
[FE1:T1 [, x:T1rHt2:T2
[F(letx=t1int2): T2

LET

Let Expressions N

* (Monomorphic) Let and Let Rec

| ret:17 |

let
(Ft1:T7T1 ILx:Ti1+-t2:T2
[F(letx=t1int2): T2

LET

Let Expressions .

* (Monomorphic) Let and Let Rec

| ret:17 |

let
[=t1:T7T1 [,x:T1+t2:T2
[F(letx=t1lInt2): T2

LET

Let Expressions .

* (Monomorphic) Let and Let Rec

| ret:17 |

let
[Ft1:T1 [,x:T1rE2:T2
[F(letx=t1int2): T2

LET

let rec
[x:T1-t1:T1 [X:T1HE2:T2
[|-(letrecx =tlint2): T2

LET-REC

Let Expressions _

* (Monomorphic) Let and Let Rec

| ret:17 |

let
Fr-t1:T1 [, x:T1rt2:T2
[F(letx=t1int2): T2

LET

let rec
Mx:T1-t1:T1 [X:T1Ft2:T2
[|- (letrecx=tlint2): T2

LET-REC

Let Expressions .

* A "Simple” (Monomorphic) Type System

| ret:17 |

let
[Ft1:T1 T,x:T1rHtE2:T2
[F(letx=t1int2): T2

LET

let rec
[x:T1rt1:T1 [X:T1+H12:T2
[|- (letrecx=tlint2): T2

LET-REC

Let Expressions 79

* Example (pretend we have lists)

[Which rule do we apply?]

?2?7?

{}~letrecone =1 ::onein
let Xx = 2 in
funy-> (x::y::one):int — int list

Let Expressions .

* Example

[The let rec rule:]

{one : int list} +

letx = 2in
{one : int list} + funy->(x::y::one):
(1::o0ne): intlist int — int list LET-REC
{}-letrecone =1 ::0nein

let x = 2 in
funy-> (x::y::one):int — int list

Let Expressions o

* Example

[Need more room ...]

{one : int list} +

(1 :: one) : int list ET-REC
{}~letrecone =1 ::onein
letx =2 in

funy-> (x::y::one):int — int list

Let Expressions .

* Example

[Binary operator (saw last class)]

{one : int list} {one : int list}
1:int one : intlist gm-op
{one : int list} +
(1::o0ne): intlist

Let Expressions .

* Example

[Trivial]
CONST VAR
{one : int list} {one : int list}
1: int one : int list gm-op

{one : int list} +
(1::o0ne): intlist

Let Expressions N

* Example

CONST VAR
{one : int list} {one : int list}
1:int one : intlist gm-op
{one : int list} +
(1::o0ne): intlist

[To the next slide ...]

Let Expressions .

* Example

[from the last slide]

?2?2?

{one : int list} +-
letx =2infuny->(x::y::one)
: int — int list

Let Expressions “

* Example

[What rule?]

?2?2?

{one : int list} +-
letx =2infuny->(x::y::one)
: int — int list

Let Expressions .

* Example

[The let rule]

‘ {x :int, one : int list} -
- {one : int list} F funy-> (x::y::one)
2 . int : int — int list LET
{one : int list} +-
letx =2infuny->(x::y::one)
: int — int list

Let Expressions "

* Example

[Need more room ...]

- {one : int list} - .
2 . int LET
{one : int list} +-
letx =2infuny->(x::y::one)
: int — int list

Let Expressions .

* Example

[What next?]

?2?2?

-. {one : int list} -
-2 0int

Let Expressions ;

0

* Example

| Trivial |

CONST

-. {one : int list} -
-2 0int

Let Expressions ;

1

* Example

[To the next slide ...]

) CONST
- {one : int list} -
-2 :int

Let Expressions .

* Example

[from the last slide]

?2?2?

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions .

* Example

[What rule?]

?2?2?

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions o

* Example

| Fun! |

{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions .

* Example

[

Binary operator (saw last class)]

{y :int, X : int, {y :int, X : int,
one : int list} + one : int list} +
X & int (y :: one) : int list SIN-OP
{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list
Let Expressions ;

* Example

[Trivial] -
{y :int, X : int, {y :int, X : int,
one : int list} + one : int list} +
X & int (y :: one) : int list BIN-OP
{y :int, X : int, one : int list} +

(X ::y::one) :int list FUN

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions .

* Example

[What rule?] 277

{y :int, x : int,

one : int list} +

(y :: one) : int list BIN-OP
{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions N

* Example
{y:int, ...} {...,one:intlist}

[Bi"ary °perat°r] =~y int —one . intlist sm-op

{y :int, X : int,
one : int list} -
(y :: one) : int list BIN-OP
{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN
{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions N

* Example
{y:int, ...} {...,one:intlist}

VAR
[Trivial]

-y int —-one :intlist _ sm-op
{y :int, x : int,
one : int list} +
(y :: one) : int list BIN-OP
{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN
{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions o

* Example

|QeD |
CONST VAR

{one : int list} {one : int list}
1: int one : intlist smn-op

{one : int list} + ,

(1 ::o0ne): intlist LET-REC

{}+-letrecone=1::0nein

let x = 2 in

funy-> (x::y::one):int — int list

Let Expressions o

* Example

(oe0)

. CONST
-. {one :int list} - .
-2 :int LET
{one : int list} +-
letx =2infuny->(x::y::one)
: int — int list

Let Expressions o

* Example
{y:int, ...} {...,one:intlist}
|QeD |

var F Y :int - one : int list BIN-OP

{y :int, X : int, {y :int, X : int,
one : int list} + one : int list} +
X & int (y :: one) : int list SIN-OP
{y :int, X : int, one : int list} +
(X ::y::one) :int list FUN

{x :int, one : int list} +
funy -> (x ::y :: one)
: int — int list

Let Expressions o

! Questions so far?

104

! The Hidden Glory

105

* Big Picture: Type Checking

m It's a lot of work to write this out by hand

m Thankfully, you normally don’t have to! Just
implement type checking once, and let the
compiler do it for you!

m This is a class though so you'll have to do it
manually sometimes just to make sure you
understand it well enough (sorry...)

m And anyways, it turns out knowing how to write
proofs this way is way more general than one
might imagine ...

Hidden Glory o

ﬁ Big Picture: Curry-Howard

Type systems < logical systems
Types <& propositions

Terms < proofs (of the propositions that their
types represent)

Type checking & proof checking

Hidden Glory

* Big Picture: Curry-Howard

Modus ponens

A=B A

Function Application

[-f:A— B [~a: A
[|-fa: B

Hidden Glory o

* Big Picture: Curry-Howard

m So with a fancy enough type system, you can write
pretty much any proof you want this this way and
have a computer check it automatically

m And if you don't feel like writing it by hand, you
can write automation that writes it for/with you

Hidden Glory o

* Big Picture: Curry-Howard

Ask me in office hours!!!
This is my research areal!

m So with a fancy enough type system, you can write
pretty much any proof you want this this way and
have a computer check it automatically

m And if you don't feel like writing it by hand, you
can write automation that writes it for/with you

Hidden Glory o

{ Questions?

111

! Next Class: Polymorphism

112

ﬁ Next Class

= I will be away next week!
m I will miss office hours and both lectures.
m Prof. Elsa Gunter will cover lectures.
m This is my final planned absence.
m Quiz 3 on MP5 is next Tuesday
m All deadlines can be found on course website
m Use office hours and class forums for help

113

