

Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

- Last class, we covered mutually recursive and nested recursive datatypes
- We then showed types and type checking
- Today, we will continue with types and type checking, starting in a simply typed (monomorphic) setting
- This will set the stage for work next week on typing rules for a subset of OCaml

- Last class, we covered mutually recursive and nested recursive datatypes
- We then showed types and type checking
- Today, we will continue with types and type checking, starting in a simply typed (monomorphic) setting
- This will set the stage for work next week on typing rules for a subset of OCaml

Questions from Tuesday?

Premises

Conclusion

"I like all chocolate truffles" "I like Godiva chocolate truffles"

Premise 1 ... Premise n Conclusion

Reminder: Syntax

Premises of Premises of Premise 1 Premise n
Premise 1 Premise n

Conclusion

Axiom

"other people are conscious, too"

Reminder: Syntax

Axiom Axiom

Premise 1 ... Premise n

Conclusion

Axiom

Axiom

Premise

Conclusion

Premise

Conclusion

Reminder: Syntax

syntax of judgment should go in this box

Axiom

Axiom

Premise

Premise

Conclusion

Conclusion

Γ⊢t:T

□ true : bool

\[
 \text{False: bool}
 \]

Premise

Conclusion

Premise

Conclusion

Type Checking

Axioms

Γ⊢t:T

Γ ⊢ true : bool

Γ ⊢ false : bool

Axioms

Γ⊢t:T

 $\Gamma \vdash \text{true} : \text{bool} \qquad \Gamma \vdash \text{false} : \text{bool}$

 $\Gamma \vdash n : int$ (for n integer constant)

Axioms

Γ⊢t:T

$$\Gamma \vdash \text{true} : \text{bool} \qquad \Gamma \vdash \text{false} : \text{bool}$$

$$\Gamma \vdash n : int$$
 (for n integer constant)

$$\Gamma \vdash V : T$$
 (if $\Gamma(V) = T$)

Axioms

Γ⊢t:T

CONST

CONST

 $\Gamma \vdash \text{true} : \text{bool} \qquad \Gamma \vdash \text{false} : \text{bool}$

CONST

Γ⊢n:int

(for n integer constant)

VAR

$$\mathsf{\Gamma} \vdash \mathsf{v} : \mathsf{T}$$

 $\Gamma \vdash V : T$ (if $\Gamma(V) = T$)


```
Γ⊢t:T
```

```
\Gamma \vdash \mathbf{t1} : \mathbf{bool} \Gamma \vdash \mathbf{t2} : \mathbf{bool} AND
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : bool \Gamma \vdash t1 \mid \mid t2 : bool
```



```
Γ⊢t:T
```

```
\Gamma \vdash \mathbf{t1} : \mathbf{bool} \Gamma \vdash \mathbf{t2} : \mathbf{bool} AND
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : bool \Gamma \vdash t1 \mid \mid t2 : bool
```



```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : bool \Gamma \vdash t1 \mid \mid t2 : bool
```



```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \qquad \Gamma \vdash t2 : bool
\Gamma \vdash t1 &\& t2 : bool
```

```
\frac{\Gamma \vdash \mathbf{t1} : \mathbf{bool}}{\Gamma \vdash \mathbf{t1} \mid | \mathbf{t2} : \mathbf{bool}} or
```

How do we check this?

{b1 : bool} ⊢ b1 && false : bool

Premises?

{b1 : bool} ⊢ b1 && false : bool

```
\{b1 : bool\} \vdash b1 : bool \{b1 : bool\} \vdash false : bool
\{b1 : bool\} \vdash b1 \&\& false : bool
```

How do we check this?

How do we check this?

```
\{b1:bool\} \vdash b1:bool \ \{b1:bool\} \vdash false:bool \ \{b1:bool\} \vdash b1 \&\& false:bool
```

```
\{b1:bool\} \vdash b1:bool \ \{b1:bool\} \vdash false:bool \ \{b1:bool\} \vdash b1 \&\& false:bool
```

Type Derivation

```
\{b1:bool\} \vdash b1:bool \ \{b1:bool\} \vdash false:bool \ \{b1:bool\} \vdash b1 \&\& false:bool
```


Questions so far?

Type Variables

Conditionals

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
\Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type


```
Γ⊢t:T
```

```
\Gamma \vdash \mathbf{t1} : \mathbf{bool} \quad \Gamma \vdash \mathbf{t2} : T \quad \Gamma \vdash \mathbf{t3} : T
\Gamma \vdash (\text{if } \mathbf{t1} \text{ then } \mathbf{t2} \text{ else } \mathbf{t3}) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type


```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type


```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a **type variable** (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \Gamma \vdash t2 : T \Gamma \vdash t3 : T
 \Gamma \vdash (if t1 then t2 else t3) : T
```

- T is a type variable (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \quad \Gamma \vdash t2 : \mathbf{T} \quad \Gamma \vdash t3 : \mathbf{T}
\Gamma \vdash (if t1 then t2 else t3) : \mathbf{T}
```

- T is a type variable (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type


```
Γ⊢t:T
```

```
\Gamma \vdash t1 : bool \quad \Gamma \vdash t2 : \mathbf{T} \quad \Gamma \vdash t3 : \mathbf{T}
\Gamma \vdash (if t1 then t2 else t3) : \mathbf{T}
```

- T is a type variable (metavariable)
- Can take any type at all
- All instances in rule application must get same type
- The then branch, the else branch, and the final term must all have the same type

Is this well typed?

```
???
{ b : bool } ⊢ (if b then 5 else false) : ???
```


Why is this well typed?

???{ b : bool } ⊢ (if b then 5 else 7) : int

Questions so far?

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}$$
APP

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

```
Γ⊢t:T
```

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash \textbf{t1} : \textbf{T1}}{\Gamma \vdash (\textbf{ft1}) : T2}$$
APP

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}$$

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\Gamma \vdash f : \mathbf{T1} \longrightarrow T2 \quad \Gamma \vdash t1 : T1$$

$$\Gamma \vdash (ft1) : T2$$

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}$$
APP

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\frac{\Gamma \vdash f : \mathbf{T1} \rightarrow \mathbf{T2} \quad \Gamma \vdash t1 : \mathbf{T1}}{\Gamma \vdash (f \ t1) : \mathbf{T2}}$$

- If you have a function f of type T1→T2, and you apply it to an argument t1 of type T1, the resulting expression f t1 has type T2
- That is, f takes a T1 to a T2, so if you pass a particular T1 (which we call t1) to f, you'll get a T2

$$\begin{array}{c|c}
\Gamma \vdash f : \mathbf{T1} \rightarrow \mathbf{T2} & \Gamma \vdash t1 : T1 \\
\hline
\Gamma \vdash (ft1) : T2
\end{array}$$

Functions

$$\Gamma$$
, t1 : T1 \vdash t2 : T2
$$\Gamma \vdash \text{fun t1 -> t2 : } \mathbf{T1} \rightarrow \mathbf{T2}$$

Function Application

$$\begin{array}{c|c}
\Gamma \vdash f : \mathbf{T1} \rightarrow \mathbf{T2} & \Gamma \vdash t1 : T1 \\
\hline
\Gamma \vdash (ft1) : T2
\end{array}$$

Functions

$$\Gamma$$
, **t1**: **T1** \vdash t2: T2
$$\Gamma \vdash \text{fun } \mathbf{t1} \rightarrow \text{T2}$$

Function Application

$$\begin{array}{c|c}
\Gamma \vdash f : \mathbf{T1} \rightarrow \mathbf{T2} & \Gamma \vdash t1 : T1 \\
\hline
\Gamma \vdash (ft1) : T2
\end{array}$$

Functions

$$\Gamma$$
, t1 : T1 \vdash t2 : T2
$$\Gamma \vdash \text{fun t1 -> t2} : \text{T1} \rightarrow \text{T2}$$

Function Application

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}_{APP}$$

Functions

Extending the type environment

$$\Gamma$$
, t1: T1 \vdash t2: T2
$$\Gamma \vdash \text{fun t1 -> t2: T1} \rightarrow \text{T2}$$

Function Application

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}$$
APP

Functions

Extending the type environment

Function Application

$$\frac{\Gamma \vdash f : T1 \rightarrow T2 \quad \Gamma \vdash t1 : T1}{\Gamma \vdash (f t1) : T2}$$
APP

Functions

Extending the type environment

$$\Gamma$$
, t1: T1 \vdash t2: T2
$$\Gamma \vdash \text{fun t1 -> t2: T1} \rightarrow \text{T2}$$

Rules describe types, but also how **type environment** may change. Can only do what rule allows!

Functions

$$\Gamma$$
, t1: T1 \vdash t2: T2
$$\Gamma \vdash \text{fun t1 -> t2} : T1 \rightarrow T2$$

$$\Gamma$$
, y : int \vdash y + 3 : int Γ \vdash **fun** y -> y + 3 : int \rightarrow int

$$\Gamma$$
, y: int \vdash y + 3: int Γ \vdash fun y -> y + 3: int \rightarrow int

$$\Gamma$$
, \mathbf{y} : int \vdash $y + 3$: int Γ fun \mathbf{y} -> $y + 3$: int \rightarrow int

$$\Gamma$$
, y : int \vdash y + 3 : int \vdash fun y -> y + 3 : int \rightarrow int

$$\frac{\Gamma, y : int \vdash y + 3 : int}{\Gamma \vdash fun \ y -> y + 3 : int \rightarrow int}$$

This is just one step of the derivation

Questions so far?

Let Expressions

let

$$\Gamma \vdash t1 : T1 \quad \Gamma, x : T1 \vdash t2 : T2$$

$$\Gamma \vdash (let x = t1 in t2) : T2$$

$$\Gamma$$
, x : T1 \vdash t1 : T1 Γ , x : T1 \vdash t2 : T2 Γ \mid - (let rec x = t1 in t2) : T2

let

$$\Gamma \vdash \mathbf{t1} : \mathbf{T1} \qquad \Gamma, \ x : T1 \vdash t2 : T2$$

$$\Gamma \vdash (\text{let } x = \mathbf{t1} \text{ in } t2) : T2$$

$$\Gamma$$
, x : T1 \vdash t1 : T1 Γ , x : T1 \vdash t2 : T2 Γ \mid - (let rec x = t1 in t2) : T2

let

$$\Gamma \vdash t1 : T1$$
 Γ , $x : T1 \vdash t2 : T2$

$$\Gamma \vdash (let x = t1 in t2) : T2$$

$$\Gamma$$
, x : T1 \vdash t1 : T1 Γ , x : T1 \vdash t2 : T2 Γ \mid - (let rec x = t1 in t2) : T2

let

$$\Gamma \vdash t1 : T1 \quad \Gamma, x : T1 \vdash t2 : T2$$

$$\Gamma \vdash (let x = t1 in t2) : T2$$

$$\Gamma$$
, x : T1 \vdash t1 : T1 Γ , x : T1 \vdash t2 : T2 Γ \mid - (let rec x = t1 in t2) : T2

let

$$\Gamma \vdash t1 : T1 \quad \Gamma, x : T1 \vdash t2 : T2$$

$$\Gamma \vdash (let x = t1 in t2) : T2$$

$$\Gamma$$
, x : T1 \vdash t1 : T1 Γ , x : T1 \vdash t2 : T2 Γ |- (let rec x = t1 in t2) : T2

let

$$\Gamma \vdash \mathbf{t1} : \mathbf{T1} \quad \Gamma, \, \mathbf{x} : \mathbf{T1} \vdash \mathbf{t2} : \mathbf{T2}$$

$$\Gamma \vdash (\text{let } \mathbf{x} = \mathbf{t1} \text{ in } \mathbf{t2}) : \mathbf{T2}$$

Γ(x:T1
$$\vdash$$
 t1:T1 \vdash T, x:T1 \vdash t2:T2 \vdash LET-REC

A "Simple" (Monomorphic) Type System

let

$$\Gamma \vdash t1 : T1 \quad \Gamma, x : T1 \vdash t2 : T2$$

$$\Gamma \vdash (let x = t1 in t2) : T2$$

$$\frac{\Gamma, x : T1 \vdash t1 : T1}{\Gamma \mid - (\text{let rec } x = t1 \text{ in } t2) : T2}$$

Example (pretend we have lists)

Which rule do we apply?

???

```
{} ⊢ let rec one = 1 :: one in

let x = 2 in

fun y \rightarrow (x :: y :: one) : int \rightarrow int list

Let Expressions
```

The let rec rule:

```
{one : int list} ⊢
                              let x = 2 in
                             fun y \rightarrow (x :: y :: one) :
{one : int list} ⊢
(1:: one): int list int \rightarrow int list
 {} ⊢ let rec one = 1 :: one in
        let x = 2 in
        fun y -> (x :: y :: one) : int \rightarrow int list
                                     Let Expressions
```

81

Need more room ...

```
{one : int list} ⊢
(1 :: one) : int list
 {} ⊢ let rec one = 1 :: one in
       let x = 2 in
       fun y -> (x :: y :: one) : int \rightarrow int list
                                   Let Expressions
```

Binary operator (saw last class)

```
{one : int list} ⊢ {one : int list} ⊢
                         one: int list
1: int
                                           BIN-OP
    {one : int list} ⊢
    (1 :: one) : int list
    {} ⊢ let rec one = 1 :: one in
           let x = 2 in
           fun y -> (x :: y :: one) : int \rightarrow int list
```

Trivial

```
CONST
                                         VAR
{one : int list} ⊢ {one : int list} ⊢
                         one: int list
1: int
                                           BIN-OP
    {one : int list} ⊢
    (1 :: one) : int list
    {} ⊢ let rec one = 1 :: one in
           let x = 2 in
           fun y -> (x :: y :: one) : int \rightarrow int list
```

To the next slide ...

```
CONST
                                         VAR
{one : int list} ⊢ {one : int list} ⊢
                         one: int list
1: int
                                           BIN-OP
    {one : int list} ⊢
    (1 :: one) : int list
    {} ⊢ let rec one = 1 :: one in
           let x = 2 in
           fun y -> (x :: y :: one) : int \rightarrow int list
```

... from the last slide

???

```
{one : int list} ⊢
  let x = 2 in fun y -> (x :: y :: one)
: int → int list
```

What rule?

???

```
{one : int list} ⊢
  let x = 2 in fun y -> (x :: y :: one)
: int → int list
```

The let rule

Need more room ...

```
{one : int list} ⊢
∴ 2 : int

{one : int list} ⊢
let x = 2 in fun y -> (x :: y :: one)
: int → int list
```

Let Expressions

LET

: int \rightarrow int list

What next?

```
????
: {one : int list} -
: 2 : int
{one : int list} -
```

let x = 2 in fun y -> (x :: y :: one)

Example Trivial

```
CONST
```

```
{one : int list} ⊢
```

. 2 : int

```
LE.
```

```
{one : int list} \vdash let x = 2 in fun y \rightarrow (x :: y :: one) : int <math>\rightarrow int list
```

To the next slide ...

```
CONST
```

{one : int list} ⊢

` 2 : int

LET

```
{one : int list} \vdash let x = 2 in fun y \rightarrow (x :: y :: one) : int <math>\rightarrow int list
```

... from the last slide

???

```
{x : int, one : int list} ⊢
  fun y -> (x :: y :: one)
: int → int list
```

What rule?

???

```
{x : int, one : int list} ⊢
  fun y -> (x :: y :: one)
: int → int list
```

Fun!

```
{y : int, x : int, one : int list} ⊢
(x :: y :: one) : int list
{x : int, one : int list} ⊢
fun y -> (x :: y :: one)
```

: int \rightarrow int list

Binary operator (saw last class)

```
{y : int, x : int,
                              {y : int, x : int,
one : int list} ⊢
                              one : int list} ⊢
                               (y :: one) : int list
 x:int
                                                          BIN-OP
         {y : int, x : int, one : int list} ⊢
         (x :: y :: one) : int list
                                                             FUN
           {x : int, one : int list} ⊢
              fun y -> (x :: y :: one)
             : int \rightarrow int list
```

```
Trivial
```

VAR

BIN-OP

FUN

```
(x :: y :: one) : int list
    {x : int, one : int list} ⊢
    fun y -> (x :: y :: one)
```

: int \rightarrow int list

{y : int, x : int, one : int list} ⊢

What rule?

VAR

???

```
{y : int, x : int,}
                               {y : int, x : int,
one : int list} -
                               one : int list} ⊢
                               (y :: one) : int list
 x:int
                                                            BIN-OP
         {y : int, x : int, one : int list} ⊢
         (x :: y :: one) : int list
                                                               FUN
            \{x : int, one : int list\} \vdash
              fun y -> (x :: y :: one)
             : int \rightarrow int list
```

```
Binary operator
```

x:int

 ${y : int, x : int,}$

one : int list} -

```
{y:int, ...} {..., one:int list}

⊢ y:int ⊢ one:int list вім-ор

{y:int, x:int,
one:int list} ⊢

(y::one):int list
вім-ор
```

```
{y : int, x : int, one : int list} - (x :: y :: one) : int list
```

{x : int, one : int list} ⊢
fun y -> (x :: y :: one)

: int \rightarrow int list

Let Expressions

FUN

```
Example
                                VAR
                                                          VAR
                      {y : int, ...} {..., one : int list}
Trivial
                      ⊢ y : int ⊢ one : int list
                 VAR
                                                           BIN-OP
 {y : int, x : int,
                              {y : int, x : int,
  one : int list} -
                              one : int list} ⊢
                               (y :: one) : int list
  x:int
                                                         BIN-OP
          {y : int, x : int, one : int list} ⊢
          (x :: y :: one) : int list
                                                            FUN
             \{x : int, one : int list\} \vdash
               fun y -> (x :: y :: one)
```

: int \rightarrow int list

QED

```
CONST
                                         VAR
{one : int list} ⊢ {one : int list} ⊢
                         one: int list
1: int
                                           BIN-OP
    {one : int list} ⊢
   (1 :: one) : int list
    {} ⊢ let rec one = 1 :: one in
           let x = 2 in
           fun y -> (x :: y :: one) : int \rightarrow int list
```

QED

```
CONST
{one : int list} ⊢
· 2 : int
```

```
{one : int list} ⊢
  let x = 2 in fun y -> (x :: y :: one)
: int → int list
```

Let Expressions

LET

102

```
Example
                                VAR
                                                           VAR
                       {y : int, ...} {..., one : int list}
QED
                       ⊢ y : int ⊢ one : int list
                                                             BIN-OP
                  VAR
 {y : int, x : int,
                               {y : int, x : int,
  one : int list} ⊢
                               one : int list} ⊢
                               (y :: one) : int list
   x:int
                                                           BIN-OP
          {y : int, x : int, one : int list} ⊢
          (x :: y :: one) : int list
                                                             FUN
             \{x : int, one : int list\} \vdash
               fun y -> (x :: y :: one)
              : int \rightarrow int list
```


Questions so far?

The Hidden Glory

Big Picture: Type Checking

- It's a lot of work to write this out by hand
- Thankfully, you normally don't have to! Just implement type checking once, and let the compiler do it for you!
- This is a class though so you'll have to do it manually sometimes just to make sure you understand it well enough (sorry...)
- And anyways, it turns out knowing how to write proofs this way is way more general than one might imagine ...

- Type systems ⇔ logical systems
- Types ⇔ propositions
- Terms ⇔ proofs (of the propositions that their types represent)
- Type checking ⇔ proof checking
- So with a fancy enough type system, you can write pretty much any proof you want this this way and have a computer check it automatically
- And if you don't feel like writing it by hand, you
 can write automation that writes it for/with you

Modus ponens

$$\frac{A \Rightarrow B}{B}$$

Function Application

$$\Gamma \vdash f : A \rightarrow B$$
 $\Gamma \vdash a : A$ $\Gamma \mid fa : B$

- Type systems ⇔ logical systems
- Types ⇔ propositions
- **Terms** ⇔ **proofs** (of the propositions that their types represent)
- Type checking ⇔ proof checking
- So with a fancy enough type system, you can write pretty much any proof you want this this way and have a computer check it automatically
- And if you don't feel like writing it by hand, you can write automation that writes it for/with you

Hidden Glory

- Type systems ⇔ logical systems
- Types ⇔ propositions
- Terms ⇔ proofs (of the propositions that their types represent the proposition that the pro
- So with a fancy enough type system, you can write pretty much any proof you want this this way and have a computer check it automatically
- And if you don't feel like writing it by hand, you can write automation that writes it for/with you

Hidden Glory

Questions?

Next Class: Polymorphism

Next Class

- I will be away next week!
 - I will miss office hours and both lectures.
 - Prof. Elsa Gunter will cover lectures.
 - This is my final planned absence.
- Quiz 3 on MP5 is next Tuesday
- All deadlines can be found on course website
- Use office hours and class forums for help