
Week-2

Asymptotic Notation

2

Analyzing Algorithms
• Predict the amount of resources required:

• memory: how much space is needed?

• computational time: how fast the algorithm runs?

• FACT: running time grows with the size of the input

• Input size (number of elements in the input)

– Size of an array, polynomial degree, # of elements in a matrix, # of bits in

the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed before

termination

– Arithmetic operations (+, -, *), data movement, control, decision making

(if, while), comparison

3

Algorithm Analysis: Example
• Alg.: MIN (a[1], …, a[n])

 m ← a[1];
 for i ← 2 to n

 if a[i] < m
then m ← a[i];

• Running time:
– the number of primitive operations (steps) executed

before termination
T(n) =1 [first step] + (n) [for loop] + (n-1) [if condition] +
(n-1) [the assignment in then] = 3n - 1

• Order (rate) of growth:
– The leading term of the formula
– Expresses the asymptotic behavior of the algorithm

4

Typical Running Time Functions
• 1 (constant running time):

– Instructions are executed once or a few times

• logN (logarithmic)
– A big problem is solved by cutting the original problem in smaller

sizes, by a constant fraction at each step

• N (linear)
– A small amount of processing is done on each input element

• N logN
– A problem is solved by dividing it into smaller problems, solving

them independently and combining the solution

5

Typical Running Time Functions
• N2 (quadratic)

– Typical for algorithms that process all pairs of data items (double

nested loops)

• N3 (cubic)

– Processing of triples of data (triple nested loops)

• NK (polynomial)

• 2N (exponential)

– Few exponential algorithms are appropriate for practical use

6

Growth of Functions

Complexity Graphs

log(n
)

Complexity Graphs

log(n
)

n

n
log(n)

Complexity Graphs

n1

0

n
log(n)

n
3

n
2

Complexity Graphs (log scale)

n1

0

n2

0

n
n

1.1
n

2
n

3
n

Algorithm Complexity

• Worst Case Complexity:
– the function defined by the maximum number of steps

taken on any instance of size n
• Best Case Complexity:

– the function defined by the minimum number of steps
taken on any instance of size n

• Average Case Complexity:
– the function defined by the average number of steps

taken on any instance of size n

Best, Worst, and Average Case Complexity

Worst Case
Complexity

Average Case
Complexity

Best Case
Complexity

Number
of steps

N
(input size)

13

Example

• Code:
• a = b;

• Complexity:

14

Example

• Code:
• a = b;

• Complexity:

15

Example

• Code:
• sum = 0;

• for (i=1; i <=n; i++)
• sum += n;

• Complexity:

16

Example

• Code:
• sum = 0;

• for (j=1; j<=n; j++)
• for (i=1; i<=j; i++)
• sum++;
• for (k=0; k<n; k++)
• A[k] = k;

• Complexity:

17

Example

• Code:
• sum1 = 0;
• for (i=1; i<=n; i++)
• for (j=1; j<=n; j++)
• sum1++;
• Complexity:

18

Example

• Code:
• sum2 = 0;
• for (i=1; i<=n; i++)
• for (j=1; j<=i; j++)
• sum2++;
• Complexity:

19

Example

• Code:
• sum1 = 0;
• for (k=1; k<=n; k*=2)
• for (j=1; j<=n; j++)
• sum1++;
• Complexity:

20

Thank you

