

The University of Manchester

Active learning in lectures

Dr Lloyd Cawthorne Physics & Astronomy

My courses

- PHYS20161, Introduction to Programming for Physicists
 - Year 2, semester 1, 10 credits
 - Core, ~310 enrolled
 - Python from scratch to 2D optimisation, continuously assessed.
 - Started teaching in 18/19
- PHYS30121, Introduction to Nuclear & Particle Physics
 - Year 3, semester 1, 10 credits
 - Core, ~300 enrolled
 - Half nuclear, half particle
 - Started teaching in 19/20
- PHYS10352, Properties of Matter
 - Year 1, semester 2, 10 credits
 - Core, ~370 enrolled
 - Half Classical Thermodynamics; half solids, liquids and gasses.
 - Started teaching in 21/22

PHYS20161, Introduction to Programming for Physicists

Rewrote course in 2019 due to larger cohort.

Cawthorne, L. J Mater Sci 56, 16183-16194 (2021).

Blended delivery:

- ~50 mins of 5-10 min videos per week (tapers towards end of term).
- 1h per week interactive session where students answer polls (TurningPoint, <u>Staffnet information on setting up</u>).

Assessment:

- 5 quizzes in weeks 1-3, 7 & 8 worth 7% each. Practice versions of each available.
- 2 assignments due in weeks 4 and 12 worth 15% & 50% respectively.

Support:

- 6h per week computing labs facilitated by many GTAs
- Piazza discussion board

Feedback / my impression

Pros:

- Vocational courses are well suited to blended learning.
 - Students very much learn by doing, they gain very little from watching me *do* passively.
- Poll results show me where I need to spend time going through content.

Cons:

- Difficult to ask useful poll questions towards the end of the course.
 - Limited on what is reasonable for students to answer in a few minutes.
 - Students fall behind.
 - Will add *purpose-first* programming questions.

PHYS30121, Introduction to Nuclear & Particle Physics

Blended delivery:

- ~60 minutes of videos per week
- Typed notes
- 2h block:
 - 1st hour polls and examples (Pingo: <u>https://trypingo.com/</u>, <u>guidance on setting up</u>)
 - 2nd hour Q&A (Google slides)

Assessment:

• 1h 30 min exam in January

Support:

- 1h examples classes delivered every two weeks
- Piazza discussion board

 Highlighting important aspect

Is the reaction
$${}^{190}_{73}$$
 Ta \rightarrow^{190}_{74} W + $e^- + \bar{\nu}_e$ likely?
• Yes
• No
• Need more information
• Not sure
• Not sure
• Mat. $({}^{190}_{74}$ Ta) = 189.96923 u
 $M_{at.} ({}^{190}_{74}$ W) = 189.96318 u
 $m_e = 5.4858 \times 10^{-4}$ u
 $m_{\nu} < 4 \times 10^{-9}$ u
• Mpplying method;
underlying principles
Which cluster decay will be the most likely?
 ${}^{238}_{94}$ Pu \rightarrow^{234}_{92} U $+{}^4_2$ He, $Q = 5.59$ MeV
 ${}^{238}_{94}$ Pu \rightarrow^{210}_{92} Pb $+{}^{28}_{12}$ Mg, $Q = 75.91$ MeV
 ${}^{238}_{94}$ Pu \rightarrow^{206}_{80} Hg $+{}^{32}_{14}$ Si, $Q = 91.19$ MeV
 $T = \exp(-\sqrt{\frac{E_G}{Q_a}})$ $E_G = 2(\pi Z_1 Z_2 \alpha)^2 M_r c^2$ 7

Feedback / my impression

Pros:

- More time for examples.
- Polls allow me to highlight common misconceptions and subtleties.

Cons:

- This year students did not like the blended approach.
 - Remotely this was popular, UEQ>4. This year UEQ~3.6.
 - This year it *reminded them of lockdown*.
- They do not like unstructured Q&As.
 - Difficult to conduct a seminar with 300 students.
 - This can be done more inclusively on discussion boards (Piazza).
- Students do not like the polls if they have not watched the videos beforehand.
 - Students do not like compulsory videos.
- In future, will remove Q&A in favour of time spent reviewing the material before polls.

PHYS10352, Properties of Matter

Hybrid delivery:

- ~50 minutes of videos per week
- Typed notes
- 1h review/introduction, Tuesdays.
- 1h interactive polls, Fridays (Pingo).

Assessment:

• 1h 30 min exam (90%) and tutorial participation (10%)

Support:

- Weekly tutorials: example sheet and ~30 minutes with GTA.
- Piazza discussion board.

Use of machinery; Drilling question

Why does it rotate slower on the cold heat bath?

- A. Because it is rotating in the opposite direction
- B. Because $T_{
 m H,cup} > T_{
 m C,plate}$

C. Because
$$T_{
m H, cup} - T_{
m air} > T_{
m air} - T_{
m C, plate}$$

- D. Because $V_B > V_A$
- E. Because of friction
 - Practice underlying principles; prepare for upcoming content

Given the Helmholtz free energy is defined as F = E - TSand dE = TdS - PdV, which relationships are correct?

 Use demonstration to support question; cement idea

Consider the system displayed in the diagram. Select all statements that are true.

 $egin{aligned} Q'_{
m H} &- Q_{
m H} > 0 \ Q_{
m C} &- Q'_{
m C} > 0 \ \eta_{\mathcal{R}} &= rac{Q'_{
m C}}{Q_{
m H} - Q_{
m C}} \ Q_{
m C} &< Q_{
m H} \ W &< 0 \end{aligned}$

https://pingo.coactum.de/215009

10

Feedback / my impression

- This is perhaps the most challenging core course that semester.
 - Other courses build on concepts seen in S1 or A-level.
 - Thermodynamics can easily be a course in itself.

Pros:

- Over a cycle students review content 4 times.
- I can tailor the interactive session in response to questions raised earlier in the week.
- Have time to include demonstrations.

Cons:

- Hybrid approach is hard to deliver.
 - Can say everything quickly, or skip parts.
 - Students do not like being taught at pace.
 - Current feedback suggests I will need to revert back to something more traditional next year.
- Other courses are taught differently.

Summary

- Active learning for large cohorts is fun!
 - I like seeing how well students have understood the content.
 - Students enjoy answering the questions.
- There are a number of technologies and question types that can support active learning. [Questioning technique pocketbook; Pope, G.]
- There are still challenges:
 - A significant number of students still fall behind.
 - Traditional delivery is *easier*.
- Interactive sessions take a long time to prepare (5-6h) and require time for reflection.
- What is expected from students for each course is inconsistent and hence unclear.

Thank you for listening! Any questions?

- I am a TF lecturer on my 4th fixed term contract.
 - I am expected to try new things.
 - UEQ scores affect my job security.
 - Why are these so important? <u>Feder. T. Physics Today 73, 1, 24 (2020)</u>

What line is the error on?

```
11 def square_number(number):
       .....
12
13
      Squares input
14
      number (float)
15
16
      Lloyd Cawthorne 29/08/19
       .....
17
18
      number_squared = number**2
19
20 return number_squared
24
```


84%

number = 6, what will be printed?

```
11
     counter = 0
12
     total = 0
13
14
     while counter <= number:
15
16
          if counter \% 2 == 0:
17
18
              total = counter + total
19
20
          counter +=1
21
     print(total)
22
23
```


Is the reaction $~^{190}_{73}{ m Ta} ightarrow^{190}_{74}{ m W} + e^- + ar{ u}_e$ likely?

- Yes
- No
- Need more information
- Not sure

$$egin{aligned} M_{
m at.}\,(^{190}_{73}\,{
m Ta}) &= 189.96923~{
m u}\ M_{
m at.}\,(^{190}_{74}\,{
m W}) &= 189.96318~{
m u}\ m_e &= 5.4858 imes 10^{-4}~{
m u}\ m_{u} &< 4 imes 10^{-9}~{
m u} \end{aligned}$$

What is the ground state spin & parity of $^{41}_{20}$ Ca? $\frac{3}{2}^+$ $1g_{9/2}$ $-2p_{1/2}$ $\frac{1}{2}$ 50 $-1f_{5/2}$ $2p_{3/2}$ $\frac{3}{2}$ $-1f_{7/2}$ 28 $1d_{3/2}$ $-2s_{1/2}$ 20 $-1d_{5/2}$ $\frac{7}{2}$ $1p_{1/2}$ 8 $1p_{3/2}$ Cannot be determined. $1s_{1/2}$ 2 https://pingo.coactum.de/051970

16

Which cluster decay will be the most likely?

$$egin{aligned} & 238 \ {
m Pu}
ightarrow _{92}^{234} {
m U} + _2^4 {
m He}, \; Q = 5.59 \; {
m MeV} \ & 238 \ {
m Pu}
ightarrow _{82}^{210} {
m Pb} + _{12}^{28} {
m Mg}, \; Q = 75.91 \; {
m MeV} \ & 238 \ {
m Pu}
ightarrow _{80}^{206} \; {
m Hg} + _{14}^{32} {
m Si}, \; Q = 91.19 \; {
m MeV} \ & T = \exp igg(- \sqrt{rac{E_G}{Q_lpha}} igg) \qquad E_G = 2(\pi Z_1 Z_2 lpha)^2 M_r c^2 \end{aligned}$$

Given the Helmholtz free energy is defined as F = E - TSand dE = TdS - PdV, which relationships are correct?

$$egin{aligned} S &= -\left(rac{\partial F}{\partial T}
ight)_V\ S &= -\left(rac{\partial T}{\partial F}
ight)_V\ T &= -\left(rac{\partial F}{\partial V}
ight)_S\ P &= -\left(rac{\partial F}{\partial V}
ight)_T\ V &= \left(rac{\partial F}{\partial S}
ight)_T\ F &= \left(rac{\partial F}{\partial E}
ight)_V \end{aligned}$$

https://pingo.coactum.de/215009

Why does it rotate slower on the cold heat bath?

- A. Because it is rotating in the opposite direction
- B. Because $T_{
 m H,cup} > T_{
 m C,plate}$
- C. Because $T_{
 m H,cup} T_{
 m air} > T_{
 m air} T_{
 m C,plate}$
- D. Because $V_B > V_A$
- E. Because of friction

Consider the system displayed in the diagram. Select all statements that are true.

$$egin{aligned} Q'_{
m H} &- Q_{
m H} &> 0 \ Q_{
m C} &- Q'_{
m C} &> 0 \ \eta_{\mathcal{R}} &= rac{Q'_{
m C}}{Q_{
m H} - Q_{
m C}} \ Q_{
m C} &< Q_{
m H} \ W &< Q_{
m H} \ W &< 0 \end{aligned}$$

PHYS10352 student poll on course format (370 enrolled)

Course Format is now closed

A total of 112 vote(s) in 172 hours