Section 7
Django

materials at jrsacher.github.io/web50

https://jrsacher.github.io/web50

Outline

Project 1 post-mortem
Project 2 notes/questions
Project 3 detalls

Django

Project 1

e Grades/comments will be released before Project 2 is due

e Some common issues
o Lack of comments
o Lack of error handling
o Focusing on looks before specifications

Project 2

e Due Monday 7/22 at noon

e Advice
o Make liberal use of console.log() and print() in debugging
m remove before submitting
o Spend time thinking about how to best store channel/message info
o Don't try to make everything work at once

m Break problem down into small pieces, then break those down as well
m If stuck, try writing out pseudocode as comments, then filling in actual code

o Use the readme.md file to your advantage
o Plan for a user that's trying to break things

Project 3

Last structured project!
All critical material was covered in Lecture 7
Important to stay organized, work in small steps

Spend time planning, diagramming, etc.
o Especially your DB!
e Due Wednesday 7/31 at noon (but don't wait!)

A note on style

Some places to start:

e PEP 8, Python's official style guide
e AirBnB and Google JS style guides
e \W3Schools and Google for HTML

Style is not just looks!
e appropriate, meaningful variable names
e appropriate comments in the code
o etc.

https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript/blob/master/README.md
https://google.github.io/styleguide/jsguide.html
https://www.w3schools.com/html/html5_syntax.asp
https://google.github.io/styleguide/htmlcssguide.html

Django

Flask

"Microframework"
Lightweight

SQLAIchemy needed for DBs
Single application per project
Jinja2 for templating

Users
o Netflix
o Reddit
o Lyft AND Uber

Django

"Full-stack”

Tons of built-in tools

DB access central to framework
Multiple apps in one project possible
Django templating language

Users
o YouTube
o Instagram
o Spotify

Installation: pip install Django
Django documentation

http://jinja.pocoo.org/
https://stackshare.io/flask
https://docs.djangoproject.com/en/2.2/ref/templates/language/
https://djangostars.com/blog/10-popular-sites-made-on-django/
https://docs.djangoproject.com/en/2.2/

Creating a project

django-admin startproject <projectname>

B projectName/
[© manage.py (python scripts to run app)
P projectName/
5)__init__.py python packages)

(
S) settings.py (settings: ex: timezone, database)
Surls.py (routing for entire project)
S)wsgi.py (for web deployment)

Slide: Elle Buellesbach

Applications

django-admin startapp <appname>

Bl projectName/

[manage.py
PmprojectName/ (the high level project controls)
5)__init__.py
S) settings.py
S)urls.py (URLs will be routed through here first)
S)wsgi.py
BmappName/ (an individual app within the project)
=) init .py
Surls.py (Associating URLs with view functions)
) view.py (functions that run to create responses)
=) models. py

AND OTHERS! Slide: Elle Buellesbach

Convert a Flask app to Django

Protein identity matrix calculator from UniProt IDs

https://cadd-cdot.appspot.com/identity

Some test data:
POO533 P04626 P21860 Q15303

Can take a bit to run -- not optimized yet!
Not guaranteed to be up forever. On a public Google Cloud instance for development.

https://cadd-cdot.appspot.com/identity

Official Django documentation

Django data baseS Mozilla walkthrough of models

e Database models go in models.py
o Similar to Flask-SQLalchemy ORM (lecture 4)

python manage.py makemigrations
python manage.py migrate

class Flight(models.Model):
origin = models.ForeignKey(Airport, on_delete=models.CASCADE, relatec
destination = models.ForeignKey(Airport, on_delete=models.CASCADE, re
duration = models.IntegerField()

def __str__(self):
return f"{self.id} - {self.origin} to {self.destination}"

class Passenger(models.Model):
first = models.CharField(max_length=64)
last = models.CharField(max_length=64)
flights = models.ManyToManyField(Flight, blank=True, D

https://cs50.harvard.edu/web/2019/summer/lectures/4/
https://docs.djangoproject.com/en/2.2/topics/db/models/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Models#Model_primer

Interacting with the DB

e Python shell
o python manage.py shell
o Interactive Python session
e Django admin app
o Make a superuser (python manage.py createsuperuser)
o Register models in admin.py (admin.site.register(<model>))
o Run serverand goto http://127.0.0.1:8000/admin

Django user forms

e Easy to do! A built in feature
o from django.contrib.auth import authenticate, login, logout

e Brian demoed manual user creation

e Lots of resources out there that show how to make a login form
o Like this one

https://simpleisbetterthancomplex.com/tutorial/2017/02/18/how-to-create-user-sign-up-view.html

