1 of 133

Gravitational-wave observations with LIGO and Virgo

Christopher Berry

on behalf of the LVK

cplberry.com @cplberry

Image: NSF/LIGO/Sonoma State University/A. Simonnet

DCC G2102387 gw-openscience.org/GWTC-3/

2 of 133

Image: LIGO �This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation

14 September 2015

We observed gravitational waves

3 of 133

LVK arXiv:2111.03606

GWTC-3

4 of 133

5 of 133

Gravitational-wave astronomy

Our observations

Science highlights

6 of 133

Gravitational-wave astronomy

Our observations

Science highlights

7 of 133

Stretch and squash

8 of 133

Detector network

Google Maps

LIGO Hanford

LIGO Livingston

GEO 600

Virgo

KAGRA

LIGO India

9 of 133

Video: SXS

10 of 133

Gravitational-wave signals

LVC arXiv:1606.04856

11 of 133

LVC arXiv:1606.04856

12 of 133

Gravitational-wave astronomy

Our observations

Science highlights

13 of 133

LVC arXiv:1606.04856

14 of 133

LVC arXiv:1811.12907

15 of 133

LVC arXiv:2010.14527

16 of 133

LVK arXiv:2111.03606

17 of 133

GW200105_162426

LVK arXiv:2106.15163

18 of 133

LVK arXiv:2111.03606

19 of 133

LVK arXiv:2111.03606

20 of 133

Spin

LVC

arXiv:1706.01812�

21 of 133

LVK arXiv:2111.03606

22 of 133

Gravitational-wave astronomy

Our observations

Science highlights

23 of 133

Compact-object masses

Zevin, Spera, CPLB & Kalogera arXiv:2006.14573

24 of 133

LVK arXiv:2111.03634

Mass spectrum

25 of 133

LVK arXiv:2111.03634

Spin distribution

26 of 133

LVK arXiv:2111.03634

Redshift evolution

27 of 133

LVK arXiv:2111.03604

Hubble constant

28 of 133

Gravitational-wave astronomy has grown rapidly

Diverse range of binary observations including neutron star–black holes

Larger samples mean more precise population inferences

29 of 133

Gravitational waves are revealing the secrets of compact binaries

GWTC-3 has 90 candidates with probability of astrophysical origin > 50%

Component masses range from ~1.2 solar masses to ~110 solar masses

Population provides insights into astrophysics, cosmology and fundamental physics

O4 (end of 2022) will see even more discoveries

arXiv:2111.03606 arXiv:2111.03634 arXiv:2111.03604 gw-openscience.org

30 of 133

Thank you

cplberry.com @cplberry

gw-openscience.org/GWTC-3/

31 of 133

Space-time

Image: WGBH Boston

Space tells matter how to move, matter tells space how to curve

32 of 133

Image: Malcolm Godwin

Stellar remnants

33 of 133

Credit: Weisberg & Taylor

Pulsars confirm theoretical predictions to superb accuracy

34 of 133

Image: LIGO

LIGO Livingston�4 km arms

35 of 133

36 of 133

Signal probability

Is the signal real?

True alarm rate

False alarm rate

Probability of astrophysical origin

For more: Farr et al. arXiv:1302.5341 LVC arXiv:1602.03842 Roulet et al. arXiv:2008.07014

37 of 133

Bayes’ theorem

Posterior

Evidence

Prior

Likelihood

38 of 133

Likelihood

Waveform

Calibration

LVC arXiv:1602.03840

Noise-weighting

39 of 133

LVC arXiv:1602.03840

Waveform

GW150914

40 of 133

Likelihood

Waveform

Calibration

LVC arXiv:1602.03840

Noise-weighting

41 of 133

LVC

arXiv:1602.03840

arXiv:1606.04856

Inclination

42 of 133

LVC

arXiv:1602.03840

arXiv:1606.04856

43 of 133

Stationarity

www.gw-openscience.org/detector_status/day/20170814/

44 of 133

Stationarity

www.gw-openscience.org/detector_status/day/20170817/

45 of 133

Glitch

LVC arXiv:1710.05832

46 of 133

Glitch zoo

gravityspy.org

Zevin et al. arXiv:1611.04596

LVC arXiv:1602.03844

47 of 133

For more: �LVC arXiv:1602.03844�Davis et al. arXiv:2101.11673

Transient noise in O3

LVK arXiv:2111.03606

LVC Chirp

48 of 133

Scattering

Soni, CPLB et al arXiv:2103.12104

49 of 133

Crowd-sourcing

  1. Train volunteers using examples
  2. Use volunteers to train machine learning algorithm
  3. Use machine learning algorithm to classify data

gravityspy.org Zevin et al. arXiv:1611.04596

50 of 133

Gravity Spy

Coughlin, …, CPLB et al. arXiv:1903.04058

51 of 133

Expert and volunteer

DetChar experts identify Fast Scattering through monitoring the detector

Citizen scientists train machine learning algorithm

Citizen-scientist volunteers identify Crown through Gravity Spy images

52 of 133

Fast Scattering and Crown

Soni, CPLB et al. arXiv:2103.12104

Fast Scattering

Crown

Mislabelling due to lack of high SNR glitches in volunteer training set

53 of 133

Soni, CPLB et al. arXiv:2103.12104

Origin

54 of 133

Chirp mass

Chirp mass gives leading-order amplitude and phase evolution (Blanchet et al. arXiv:gr-qc/9501027 Poisson & Will arXiv:gr-qc/9502040)

55 of 133

No hair theorem

Credit: Matt Groening

Black holes have:

  1. Mass
  2. Spin
  3. Electric charge

56 of 133

Effective inspiral spin

Most important combination of spins for evolution of inspiral (Ajith et al. arXiv:0909.2867, Santamaría et al. arXiv:1005.3306)

57 of 133

Exploring parameter space

Mapping the posterior is difficult (Veitch et al. arXiv:1409.7215; Romero-Shaw, …, CPLB et al. arXiv:2006.00714)

58 of 133

Posterior calibration

CPLB et al. arXiv:1411.6934

59 of 133

LVC arXiv:2010.14527

60 of 133

LVC arXiv:2108.01045

61 of 133

LVC arXiv:2108.01045

62 of 133

LVC arXiv:2108.01045

63 of 133

LVK arXiv:2111.03606

64 of 133

GW190412

LVC arXiv:2004.08342

65 of 133

GW190412

Zevin, CPLB et al arXiv:2006.11293

66 of 133

GW190412

Zevin, CPLB et al arXiv:2006.11293

67 of 133

LVC arXiv:2006.12611

GW190814

68 of 133

LVC arXiv:1908.01012

Neutron star stuff

69 of 133

LVC arXiv:2006.12611

GW190814

70 of 133

Compact-object masses

Zevin, Spera, CPLB & Kalogera arXiv:2006.14573

71 of 133

The lower mass gap

Zevin, Spera, CPLB & Kalogera arXiv:2006.14573

72 of 133

GW190814-like systems

Zevin, Spera, CPLB & Kalogera arXiv:2006.14573

73 of 133

GW190814 rates

Zevin, Spera, CPLB & Kalogera arXiv:2006.14573

74 of 133

GW190814

Zevin, Spera, CPLB & KalogeraarXiv:2006.14573

75 of 133

GW190521

LVC arXiv:2009.01190

76 of 133

GW190521

LVC arXiv:2009.01190

77 of 133

Hierarchical mergers

See Gálvez Ghersi & Stein arXiv:2007.11578

78 of 133

Hierarchical mergers

Kimball, Talbot, CPLB et al. arXiv:2011.05332

79 of 133

Example cluster

Kimball, Talbot, CPLB et al. arXiv:2011.05332

80 of 133

GW170817

LVC arXiv:1811.12907

81 of 133

Radio (408 MHz)

Atomic hydrogen

Radio (2.5 GHz)

Molecular hydrogen

Infrared

Mid-infrared

Near infrared

Optical

X-ray

Gamma ray

Image:�NASA

The multiwavelength universe

82 of 133

Gamma-rays

LVC, Fermi, INTEGRAL arXiv:1710.05834

83 of 133

LVC+ arXiv:1710.05833

84 of 133

Spectrum of observations

LVC+ arXiv:1710.05833

85 of 133

Spectrum of observations

LVC+ arXiv:1710.05833

86 of 133

Light

Metzger & Berger arXiv:1108.6056

87 of 133

Expansion of the Universe

Credit: Einstein Online

88 of 133

Spectrum of observations

Villar et al. arXiv:1710.11576

89 of 133

Heavy elements

Image: AP/F. Vergara

90 of 133

Radius

LVC arXiv:1805.11581

91 of 133

GW190425

LVC arXiv:2001.01761

92 of 133

GW190425

LVC arXiv:2001.01761

93 of 133

GW190425

LVC arXiv:2001.01761

94 of 133

GW200105 & GW200115

LVK arXiv:2106.15163

No tidal information

95 of 133

Spectrograms

LVK arXiv:2106.15163

96 of 133

Spins

LVK arXiv:2106.15163

97 of 133

Sky location

LVK arXiv:2106.15163

98 of 133

Bayes’ theorem

Posterior

Evidence

Prior

Likelihood

99 of 133

Bayes’ theorem

Posterior

Likelihood

Evidence

Prior

100 of 133

Bayes’ theorem

Model posterior

Evidence

Model prior

101 of 133

Stevenson, CPLB & Mandel�arXiv:1703.06873

Binary formation

Model inference

102 of 133

Stevenson, CPLB & Mandel�arXiv:1703.06873

Binary formation

Model inference

103 of 133

Population reweighting

Kimball, Talbot, CPLB et al. arXiv:2005.00023

104 of 133

Population priors: GW190521

Fishbach & Holz arXiv:2009.05472

105 of 133

Binary stars

Credit: Lucas Film

106 of 133

Binary formation

Belczynski et al.�arXiv:1602.04531

Rodriguez et al.�arXiv:1604.04254

Binary formation

Belczynski et al.�arXiv:1602.04531

Rodriguez et al.�arXiv:1604.04254

107 of 133

Predictions

Barrett, …, CPLB et al. arXiv:1711.06287

108 of 133

Formation channels

Zevin, Bavera, CPLB et al. arXiv:2011.10057

109 of 133

Branching ratios

Zevin, Bavera, CPLB et al. arXiv:2011.10057

110 of 133

Branching ratios

Zevin, Bavera, CPLB et al. arXiv:2011.10057

111 of 133

Branching ratios

Zevin, Bavera, CPLB et al. arXiv:2011.10057

112 of 133

A mixture

Zevin, Bavera, CPLB et al. arXiv:2011.10057

113 of 133

Future

Zevin, Bavera, CPLB et al. arXiv:2011.10057

114 of 133

Primordial black holes?

Franciolini et al. arXiv:2105.03349

115 of 133

Primordial black holes?

Franciolini et al. arXiv:2105.03349

116 of 133

Next-generation mergers

Kimball, CPLB & Kalogera arXiv:1903.07813

117 of 133

Redshift evolution

Barrett, …, CPLB et al. arXiv:1711.06287

118 of 133

Population synthesis parameters

Barrett, …, CPLB et al. arXiv:1711.06287

119 of 133

Barrett, …, CPLB et al. arXiv:1711.06287

Correlations

120 of 133

LVK arXiv:2111.03604

Hubble constant

121 of 133

LVK arXiv:2111.03604

Systematics

122 of 133

LVC arXiv:2109.12197

Subsolar mass search

123 of 133

Detector network

Google Maps

LIGO Hanford

LIGO Livingston

GEO 600

Virgo

KAGRA

LIGO India

124 of 133

Plausible detector sensitivities

LVK arXiv:1304.0670

160–190 Mpc

> 1 Mpc

80–115 Mpc

125 of 133

O3b sensitivity

LVK arXiv:2111.03606

126 of 133

3-dimensional localization

Del Pozzo, CPLB et al�arXiv:1801.08009

127 of 133

3-dimensional localization

Del Pozzo, CPLB et al�arXiv:1801.08009

128 of 133

Scaling

Volumes

Not to scale

129 of 133

Design sensitivity

Pankow, …, CPLB et al.�arXiv:1909.12961

130 of 133

Cosmological reach

Adapted from Hall & Evans arXiv:1902.09485

131 of 133

Detector boost

Kalogera, CPLB et al. arXiv:1903.09220

132 of 133

Large sample size

Kalogera, CPLB et al. arXiv:1903.09220

133 of 133

www.gw-openscience.org

cplberry.com