Gravitational-wave observations with LIGO and Virgo
Christopher Berry
on behalf of the LVK
cplberry.com • @cplberry
Image: NSF/LIGO/Sonoma State University/A. Simonnet
DCC G2102387 • gw-openscience.org/GWTC-3/
Image: LIGO �This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation
14 September 2015
We observed gravitational waves
LVK arXiv:2111.03606
GWTC-3
Gravitational-wave astronomy
Our observations
Science highlights
Gravitational-wave astronomy
Our observations
Science highlights
Stretch and squash
Detector network
Google Maps
LIGO Hanford
LIGO Livingston
GEO 600
Virgo
KAGRA
LIGO India
Video: SXS
Gravitational-wave signals
LVC arXiv:1606.04856
LVC arXiv:1606.04856
Gravitational-wave astronomy
Our observations
Science highlights
LVC arXiv:1606.04856
LVC arXiv:1811.12907
LVC arXiv:2010.14527
LVK arXiv:2111.03606
GW200105_162426
LVK arXiv:2106.15163
LVK arXiv:2111.03606
LVK arXiv:2111.03606
Spin
LVC
arXiv:1706.01812�
LVK arXiv:2111.03606
Gravitational-wave astronomy
Our observations
Science highlights
Compact-object masses
Zevin, Spera, CPLB & Kalogera arXiv:2006.14573
LVK arXiv:2111.03634
Mass spectrum
LVK arXiv:2111.03634
Spin distribution
LVK arXiv:2111.03634
Redshift evolution
LVK arXiv:2111.03604
Hubble constant
Gravitational-wave astronomy has grown rapidly
Diverse range of binary observations including neutron star–black holes
Larger samples mean more precise population inferences
Gravitational waves are revealing the secrets of compact binaries
GWTC-3 has 90 candidates with probability of astrophysical origin > 50%
Component masses range from ~1.2 solar masses to ~110 solar masses
Population provides insights into astrophysics, cosmology and fundamental physics
O4 (end of 2022) will see even more discoveries
arXiv:2111.03606 arXiv:2111.03634 arXiv:2111.03604 gw-openscience.org
Thank you
cplberry.com • @cplberry
gw-openscience.org/GWTC-3/
Space-time
Image: WGBH Boston
Space tells matter how to move, matter tells space how to curve
Image: Malcolm Godwin
Stellar remnants
Credit: Weisberg & Taylor
Pulsars confirm theoretical predictions to superb accuracy
Image: LIGO
LIGO Livingston�4 km arms
Signal probability
Is the signal real?
True alarm rate
False alarm rate
Probability of astrophysical origin
For more: Farr et al. arXiv:1302.5341 LVC arXiv:1602.03842 Roulet et al. arXiv:2008.07014
Bayes’ theorem
Posterior
Evidence
Prior
Likelihood
Likelihood
Waveform
Calibration
LVC arXiv:1602.03840
Noise-weighting
LVC arXiv:1602.03840
Waveform
GW150914
Likelihood
Waveform
Calibration
LVC arXiv:1602.03840
Noise-weighting
LVC
arXiv:1602.03840
arXiv:1606.04856
Inclination
LVC
arXiv:1602.03840
arXiv:1606.04856
Stationarity
www.gw-openscience.org/detector_status/day/20170814/
Stationarity
www.gw-openscience.org/detector_status/day/20170817/
Glitch
LVC arXiv:1710.05832
Glitch zoo
gravityspy.org
Zevin et al. arXiv:1611.04596
LVC arXiv:1602.03844
For more: �LVC arXiv:1602.03844�Davis et al. arXiv:2101.11673
Transient noise in O3
LVK arXiv:2111.03606
LVC Chirp
Scattering
Soni, CPLB et al arXiv:2103.12104
Crowd-sourcing
gravityspy.org Zevin et al. arXiv:1611.04596
Gravity Spy
Coughlin, …, CPLB et al. arXiv:1903.04058
Expert and volunteer
DetChar experts identify Fast Scattering through monitoring the detector
Citizen scientists train machine learning algorithm
Citizen-scientist volunteers identify Crown through Gravity Spy images
Fast Scattering and Crown
Soni, CPLB et al. arXiv:2103.12104
Fast Scattering
Crown
Mislabelling due to lack of high SNR glitches in volunteer training set
Soni, CPLB et al. arXiv:2103.12104
Origin
Chirp mass
Chirp mass gives leading-order amplitude and phase evolution (Blanchet et al. arXiv:gr-qc/9501027 Poisson & Will arXiv:gr-qc/9502040)
No hair theorem
Credit: Matt Groening
Black holes have:
Effective inspiral spin
Most important combination of spins for evolution of inspiral (Ajith et al. arXiv:0909.2867, Santamaría et al. arXiv:1005.3306)
Exploring parameter space
Mapping the posterior is difficult (Veitch et al. arXiv:1409.7215; Romero-Shaw, …, CPLB et al. arXiv:2006.00714)
Posterior calibration
CPLB et al. arXiv:1411.6934
LVC arXiv:2010.14527
LVC arXiv:2108.01045
LVC arXiv:2108.01045
LVC arXiv:2108.01045
LVK arXiv:2111.03606
GW190412
LVC arXiv:2004.08342
GW190412
Zevin, CPLB et al arXiv:2006.11293
GW190412
Zevin, CPLB et al arXiv:2006.11293
LVC arXiv:2006.12611
GW190814
LVC arXiv:1908.01012
Neutron star stuff
LVC arXiv:2006.12611
GW190814
Compact-object masses
Zevin, Spera, CPLB & Kalogera arXiv:2006.14573
The lower mass gap
Zevin, Spera, CPLB & Kalogera arXiv:2006.14573
GW190814-like systems
Zevin, Spera, CPLB & Kalogera arXiv:2006.14573
GW190814 rates
Zevin, Spera, CPLB & Kalogera arXiv:2006.14573
GW190814
Zevin, Spera, CPLB & Kalogera�arXiv:2006.14573
GW190521
LVC arXiv:2009.01190
GW190521
LVC arXiv:2009.01190
Hierarchical mergers
See Gálvez Ghersi & Stein arXiv:2007.11578
Hierarchical mergers
Kimball, Talbot, CPLB et al. arXiv:2011.05332
Example cluster
Kimball, Talbot, CPLB et al. arXiv:2011.05332
GW170817
LVC arXiv:1811.12907
Radio (408 MHz)
Atomic hydrogen
Radio (2.5 GHz)
Molecular hydrogen
Infrared
Mid-infrared
Near infrared
Optical
X-ray
Gamma ray
Image:�NASA
The multiwavelength universe
Gamma-rays
LVC, Fermi, INTEGRAL arXiv:1710.05834
LVC+ arXiv:1710.05833
Spectrum of observations
LVC+ arXiv:1710.05833
Spectrum of observations
LVC+ arXiv:1710.05833
Light
Metzger & Berger arXiv:1108.6056
Expansion of the Universe
Credit: Einstein Online
Spectrum of observations
Villar et al. arXiv:1710.11576
Heavy elements
Image: AP/F. Vergara
Radius
LVC arXiv:1805.11581
GW190425
LVC arXiv:2001.01761
GW190425
LVC arXiv:2001.01761
GW190425
LVC arXiv:2001.01761
GW200105 & GW200115
LVK arXiv:2106.15163
No tidal information
Spectrograms
LVK arXiv:2106.15163
Spins
LVK arXiv:2106.15163
Sky location
LVK arXiv:2106.15163
Bayes’ theorem
Posterior
Evidence
Prior
Likelihood
Bayes’ theorem
Posterior
Likelihood
Evidence
Prior
Bayes’ theorem
Model posterior
Evidence
Model prior
Stevenson, CPLB & Mandel�arXiv:1703.06873
Binary formation
Model inference
Stevenson, CPLB & Mandel�arXiv:1703.06873
Binary formation
Model inference
Population reweighting
Kimball, Talbot, CPLB et al. arXiv:2005.00023
Population priors: GW190521
Fishbach & Holz arXiv:2009.05472
Binary stars
Credit: Lucas Film
Binary formation
Belczynski et al.�arXiv:1602.04531
Rodriguez et al.�arXiv:1604.04254
Binary formation
Belczynski et al.�arXiv:1602.04531
Rodriguez et al.�arXiv:1604.04254
Predictions
Barrett, …, CPLB et al. arXiv:1711.06287
Formation channels
Zevin, Bavera, CPLB et al. arXiv:2011.10057
Branching ratios
Zevin, Bavera, CPLB et al. arXiv:2011.10057
Branching ratios
Zevin, Bavera, CPLB et al. arXiv:2011.10057
Branching ratios
Zevin, Bavera, CPLB et al. arXiv:2011.10057
A mixture
Zevin, Bavera, CPLB et al. arXiv:2011.10057
Future
Zevin, Bavera, CPLB et al. arXiv:2011.10057
Primordial black holes?
Franciolini et al. arXiv:2105.03349
Primordial black holes?
Franciolini et al. arXiv:2105.03349
Next-generation mergers
Kimball, CPLB & Kalogera arXiv:1903.07813
Redshift evolution
Barrett, …, CPLB et al. arXiv:1711.06287
Population synthesis parameters
Barrett, …, CPLB et al. arXiv:1711.06287
Barrett, …, CPLB et al. arXiv:1711.06287
Correlations
LVK arXiv:2111.03604
Hubble constant
LVK arXiv:2111.03604
Systematics
LVC arXiv:2109.12197
Subsolar mass search
Detector network
Google Maps
LIGO Hanford
LIGO Livingston
GEO 600
Virgo
KAGRA
LIGO India
Plausible detector sensitivities
LVK arXiv:1304.0670
160–190 Mpc
> 1 Mpc
80–115 Mpc
O3b sensitivity
LVK arXiv:2111.03606
3-dimensional localization
Del Pozzo, CPLB et al�arXiv:1801.08009
3-dimensional localization
Del Pozzo, CPLB et al�arXiv:1801.08009
Scaling
Volumes
Not to scale
Design sensitivity
Pankow, …, CPLB et al.�arXiv:1909.12961
Cosmological reach
Adapted from Hall & Evans arXiv:1902.09485
Detector boost
Kalogera, CPLB et al. arXiv:1903.09220
Large sample size
Kalogera, CPLB et al. arXiv:1903.09220
www.gw-openscience.org
cplberry.com