
November 12, 2024

Data 101, Fall 2024 @ UC Berkeley
Lisa Yan, Michael Ball https://data101.org/fa24/

1

Transactions

LECTURE 21

https://data101.org/fa24/

Join at slido.com
#transactions

ⓘ
Click Present with Slido or install our Chrome extension to display joining
instructions for participants while presenting.

https://www.sli.do/features-google-slides?interaction-type=Sm9pbg%3D%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF2MXZNc2gwN2NCSlBCd1R6UW0zZkdKaFVKZjEzRmRGZjNrVVFpYm9LcDFBIiwic2xpZGVJZCI6IlNMSURFU19BUEkxNjA2ODI2Mzg2XzAiLCJ0eXBlIjoiU2xpZG9Kb2luaW5nIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

#transactions

Updates create challenges

So far, weʼve largely focused on data science/read-only workloads.
In many settings, we need to also support updates.
● Single-user, one-at-a-time updates are easy.
● But multi-user, simultaneous updates are challenging.

3

When updating data, we want correctness +
speed, particularly when users are accessing
and modifying the same relations.
Course/lecture goals:
● Understand challenges that updates cause
● Understand APIs/related guarantees.

Today, a glance at
database internals:
transactions. More in
CS186 Database Systems!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
Concurrency Control:
● Many users query and update a database simultaneously.
● How do we avoid confusion / incorrect state?

Recovery:
● What happens when things fail?
● Many such failure modes: Cancel modification partway,
● app failure, DB engine failure, HW failure…

Two Main Features We Expect from our Database System for Updates

4

To understand these features, we need to
introduce the concept of transactions.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/
TCL

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides

5

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

What is a Transaction?

6

Colloquially, a transaction in a database is a unit of work
that should appear to “happen together.ˮ
Classic example: Debit/credit banking transaction, i.e.,
moving $1k from one account (1111) to another (9999).

BEGIN
-- "debit" one account
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1111;
-- "credit" the other account
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
COMMIT

These SQL commands need to
“happen together.ˮ
BEGIN, COMMIT are SQL TCL
Transaction Control Language)
commands.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

What constitutes “happening togetherˮ? Observation #1

7

BEGIN
-- "debit" one account
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1111;
-- "credit" the other account
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
COMMIT

A few observations:
1. We need both debit and credit to

happen, i.e., we should not have
partial transactions.

2. …?

(to be continued…)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

SQL TCL

8

Data
Definition
Language

Transaction
Control

Language

Data
Manipulation

Language

Data
Query
Language

Data
Control
Language

✅ ✅ ✅

BEGIN Note added 11/17/24 SET is not
included in the TCL (as mentioned in
Disc 12. The diagram says SET
Constraint is under the TCL.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

SQL TCL, Briefly

A transaction in SQL is a list of commands
sandwiched by BEGIN and COMMIT.

If BEGIN/COMMIT not specified, then most systems will
autocommit individual SQL commands, i.e.,
auto-wrap each command in its own transaction.

9

Postgres BEGIN, START TRANSACTION, COMMIT,
END, ROLLBACK, ABORT, SAVEPOINT

BEGIN
<command 1>
…
<command n>

COMMIT

Generally (with slight syntax variation
across systems):
● BEGIN equivalent to START, BEGIN

WORK, START TRANSACTION, etc.
● COMMIT equivalent to END, END

WORK, END TRANSACTION, etc.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://www.postgresql.org/docs/9.1/sql-begin.html
https://www.postgresql.org/docs/9.1/sql-start-transaction.html
https://www.postgresql.org/docs/9.1/sql-commit.html
https://www.postgresql.org/docs/9.1/sql-end.html
https://www.postgresql.org/docs/9.1/sql-rollback.html
https://www.postgresql.org/docs/9.1/sql-abort.html
https://www.postgresql.org/docs/9.1/sql-savepoint.html

#transactions
Savepoints let you break your transactions
up into pieces. You can then “partially
rollbackˮ to a prior savepoint, or abort
altogether.
● ABORT
● SAVEPOINT save_name
● ROLLBACK TO SAVEPOINT save_name

○ Undo any commands that happened
after the specified savepoint; and

○ Implicitly destroy any savepoints
created after the specified one.

Use case: beyond the scope of this class,
but generally used with SQL conditionals or
as part of database constraints.

[extra] SQL TCL Savepoints

10

BEGIN
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1234;
SAVEPOINT debit_done;
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
SAVEPOINT credit_done;
ROLLBACK TO SAVEPOINT debit_done;
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 4321;
END

(arbitrary example;
what is this doing?

Postgres BEGIN, START TRANSACTION, COMMIT,
END, ROLLBACK, ABORT, SAVEPOINT

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://www.postgresql.org/docs/9.1/sql-begin.html
https://www.postgresql.org/docs/9.1/sql-start-transaction.html
https://www.postgresql.org/docs/9.1/sql-commit.html
https://www.postgresql.org/docs/9.1/sql-end.html
https://www.postgresql.org/docs/9.1/sql-rollback.html
https://www.postgresql.org/docs/9.1/sql-abort.html
https://www.postgresql.org/docs/9.1/sql-savepoint.html

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides

The ACID
Principle

11

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

What constitutes “happening togetherˮ? Observations

12

BEGIN
-- "debit" one account
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1111;
-- "credit" the other account
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
COMMIT

A few observations:
1. We need both debit and credit to

happen, i.e., we should not have
partial transactions.

2. At the end of transactions, any
database constraints should still be
satisfied.

3. Even if another transaction happens
simultaneously, one should appear to
have finished “first.ˮ

4. A committed transaction should
appear to have happened, even if
there is a power failure/reboot later.

These four properties, known
as ACID, define how
transactions guarantee
1 concurrency control and
2 recovery.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

ACID Basic Guarantees

ACID defines four properties of transactions that guarantee concurrency
control and recovery.

Atomicity

Consistency

Isolation

.
Durability

13

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
ACID defines four properties of transactions that guarantee concurrency
control and recovery.

ACID Basic Guarantees

14

Either all the commands are reflected in the database, or none are.
Ex: Both debit+credit should occur, or both should fail to occur.

If COMMIT succeeds, all the database integrity checks hold true.
(primary key/foreign keys, constraints, etc.)

Concurrent transactions should externally appear to run
sequentially, i.e., 2 concurrent transactions should not “seeˮ each
otherʼs intermediate results.

If COMMIT succeeds, all changes from the transaction persist,
even if there is a power failure or a reboot, until the transaction is
overwritten by a later transaction.

Atomicity

Consistency

Isolation

Durability

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

History] Why ACID? Unknown, but…

15

Jim Gray, PhD, UC Berkeley,
Industry/ Academic researcher. 1998
Turing Award Winner “For seminal
contributions to database and
transaction processing research and
technical leadership in system
implementation.ˮ

1983

Gray, 1981, Hearder and Reuter, 1983,
Wikipedia (acid test (disambiguation))

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://jimgray.azurewebsites.net/papers/thetransactionconcept.pdf
https://dl.acm.org/doi/10.1145/289.291
https://en.wikipedia.org/wiki/Acid_test_(disambiguation)

#transactions

Exercise] ACID

16

BEGIN
-- "debit" one account
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1111;
-- "credit" the other account
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
COMMIT

A few observations:
1. We need both debit and credit to

happen, i.e., we should not have
partial transactions.

2. At the end of transactions, any
database constraints should still be
satisfied.

3. Even if another transaction happens
simultaneously, one should appear to
have finished “first.ˮ

4. A committed transaction should
appear to have happened, even if
there is a power failure/reboot later.

Match 14 with A, C, I, and D
from the ACID Principle. 🤔

A. D, I, C, A
B. I, C, A, D
C. A, C, I, D
D. A, C, D, I
E. Something else

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Match 1-4 with A, C, I, and D
from the ACID Principle.

ⓘ
Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjgwYWRjMjlkLTE3NGUtNDAzZC04ZTE3LTBhM2YxMWQ3OTBlNSIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTM0NDEwNzg5M18wIiwidGltZWxpbmUiOlt7InBvbGxRdWVzdGlvblV1aWQiOiJmMDkwZWFmZC1hYjM3LTRkOGEtODMwNC1iNDE0YzMxZTU2MDMiLCJzaG93UmVzdWx0cyI6dHJ1ZX1dLCJ0eXBlIjoiU2xpZG9Qb2xsIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

#transactions

Solution] ACID

18

BEGIN
-- "debit" one account
UPDATE checking
 SET amount = amount – 1000
 WHERE acctId = 1111;
-- "credit" the other account
UPDATE savings
 SET amount = amount + 1000
 WHERE acctId = 9999;
COMMIT

A few observations:
A. We need both debit and credit to

happen, i.e., we should not have
partial transactions.

C. At the end of transactions, any
database constraints should still be
satisfied.

I. Even if another transaction happens
simultaneously, one should appear to
have finished “first.ˮ

D. A committed transaction should
appear to have happened, even if
there is a power failure/reboot later.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

If COMMIT succeeds, all the database integrity checks hold true.
(primary key/foreign keys, constraints, etc.)

How does the database address each ACID property?

19

Atomicity

Consistency

Isolation

Durability

Standard database checks (relatively efficient to check for
core things like attribute types, keys, constraints, etc.)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

How does the database address each ACID property?

20

Either all the commands are reflected in the database, or none are.
Ex: Both debit+credit should occur, or both should fail to occur.

If COMMIT succeeds, all changes from the transaction persist,
even if there is a power failure or a reboot, until the transaction is
overwritten by a later transaction.

Atomicity

Consistency

Isolation

Durability

The databaseʼs internal recovery system.
After a crash:
● Redo all committed work; and
● Undo all uncommitted work!
See CS186 for the implementation. Devil is in the details!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

How does the database address each ACID property?

Atomicity

Consistency

Isolation

Durability

21

Concurrent transactions should externally appear to run
sequentially, i.e., 2 concurrent transactions should not “seeˮ each
otherʼs intermediate results.

Provided by concurrency control, a component of the
database. Weʼll grasp the intuition today!!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides
Isolation

22

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
Isolation: Concurrent transactions
should externally appear to run
sequentially.
● If the database receives these

transactions simultaneously, we
should be able to successfully
execute all three as if they
happened “in isolation.ˮ

Isolation

23

Hire Mercy as the
new VP of
Engineering!

Move the entire
payroll of the London
Office to the
Cambridge Office!

Prepare tax
projections for

the 2nd quarter!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Isolation,

24

Prepare tax
projections for the

2nd quarter!Hire Mercy as the
new VP of

Engineering!

Move the entire payroll
of the London Office to
the Cambridge Office!

Assumption: the precise order of
these three transactions doesnʼt
matter. What matters is that they
appeared to have been executed
by the DBMS in some order.

The challenge: How do we execute
these transactions “in isolationˮ but
“concurrentlyˮ? With one single
machine?

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Isolation,

25

Prepare tax
projections for the

2nd quarter!Hire Mercy as the
new VP of

Engineering!

Move the entire payroll
of the London Office to
the Cambridge Office!

For simplicity, we will limit our
discussion to reads and writes of
individual “objectsˮ:

“Objectsˮ := records (for now)

i-th transaction has Read from O
Ri(O)

i-th transaction has Write to O
Wi(O [= value])

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides

Transaction
Schedules

26

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Determining Transaction Schedules that Maintain Isolation

Our goal: Understand how multiple transactions can run concurrently (for
performance) but also in isolation (for ACID.

27

To do so, weʼll define the following:
1. Define transaction schedules (i.e.,

list of read/writes).

2. Define serial schedules, which
satisfy isolation by definition.

3. Define serializable schedules,
which allow for concurrency while
maintaining isolation.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Example: Two Transactions

28

-- set Parth’s salary to 10% more
-- than Jonah’s
UPDATE employee
SET salary = (SELECT salary*1.1
 FROM employee
 WHERE name='Jonah')
WHERE name = 'Parth';

-- set Parth’s salary to 10% more

UPDATE employee
SET salary = (SELECT salary*1.1
 FROM employee
 WHERE name='Parth')
WHERE name = ‘Parth';

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
A transaction schedule is a ordered list of actions from a set of
transactions.

Transaction Schedules

29

A proposed
Transaction Schedule
of T1 and T2

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

tim
e

While there are many possible transaction
schedules, a DBMS will pick one with which
to schedule and execute read/write actions.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
A transaction schedule is a ordered list of actions from a set of
transactions.
● The ordered schedule of actions (reads from/writes to objects)

represents the actual/potential execution sequence in time, as seen by
the DBMS.

Transaction Schedules

30

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

tim
e

time slot 1
time slot 2
time slot 3
time slot 4

✅

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
A transaction schedule is a ordered list of actions from a set of
transactions.
● The ordered schedule of actions (reads from/writes to objects)

represents the actual/potential execution sequence in time, as seen by
the DBMS.

● The order in which two actions from the same transaction T are
scheduled must reflect the order in which they appear in T.

Transaction Schedules

31

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

tim
e

✅

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Determining Transaction Schedules that Maintain Isolation

Our goal: Understand how multiple transactions can run concurrently (for
performance) but also in isolation (for ACID.

32

To do so, weʼll define the following:
1. Define transaction schedules (i.e.,

list of read/writes).

2. Define serial schedules, which
satisfy isolation by definition.

3. Define serializable schedules,
which allow for concurrency while
maintaining isolation.

✅

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Serial Schedules

A serial schedule is a transaction schedule for which
actions from different transactions are not interleaved.

33

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

serial schedule

tim
e

serial schedule not a serial schedule;
transactions interleaved

Serial schedules exhibit no concurrency, because
actions of a transaction are executed together and

separate from those in other transactions.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Do these schedules satisfy the isolation property?

34

Which of these three schedules
satisfy the isolation property?
Select all.

🤔
Isolation: Concurrent transactions
should externally appear to run
sequentially, i.e., 2 concurrent
transactions should not (appear to)
“seeˮ each otherʼs intermediate results.

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

tim
e

1. 2. 3.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Which of these three
schedules satisfy the
isolation property? Select all.

ⓘ
Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjUzMGVmYTZhLTg1OTgtNDU0YS1hNGI0LWVmZjg4YWE2ODIwMiIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTE2NjI1MTUwOTBfMCIsInRpbWVsaW5lIjpbeyJwb2xsUXVlc3Rpb25VdWlkIjoiYmMzOTU3MTctY2MyOS00MzhlLWIyYzItMTAxYTM0ZWYzYzJkIiwic2hvd1Jlc3VsdHMiOnRydWV9XSwidHlwZSI6IlNsaWRvUG9sbCJ9
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides
Serializability

36

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Do these schedules satisfy the isolation property?

37

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

tim
e

1. 2. 3.

Yes Yes Yes!

Isolation. If we execute a given
schedule, from the DBMSʼs POV,
individual transactions appear to
be executed sequentially.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

All three schedules satisfy the isolation property!

38

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R1(J)

W1(P)

R2(P)

W2(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

tim
e

1. 2. 3.

It is okay that these two serial schedules
produce non-equivalent database

outcome states! Isolation. If we execute a given
schedule, from the DBMSʼs POV,
individual transactions appear to
be executed sequentially.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

All three schedules satisfy the isolation property!

39

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

tim
e

1. 2. 3.

Isolation. If we execute a given
schedule, from the DBMSʼs POV,
individual transactions appear to
be executed sequentially.

Despite the interleaving, this schedule
has an equivalent database outcome to
one of the serial schedules!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Schedule 3 is a serializable schedule

40

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

tim
e

1. 2. 3.

Despite the interleaving, this schedule
has an equivalent database outcome to
one of the serial schedules!

Schedule 3 is a serializable schedule:
a transaction schedule whose
database outcome is equivalent to
some serial schedule.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Unserializable Schedules

41

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:tim

e

2. 3.

Not all schedules are serializable! This
is an unserializable schedule, because
there is no serial equivalent, and
therefore transactions do not appear
isolated.

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

serializable
schedule

serial schedule

4.
T1 T2

R2(P)

R1(J)

W1(P)

W2(P)

⚠

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

A Joke

42

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

43

Announcements

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides

Strict 2Phase
Locking

44

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Summary so far

Our goal: Allow multiple transactions to run concurrently (for performance)
but also in isolation (for ACID.

45

To do so, weʼve traced the following
steps:
1. Define transaction schedules (i.e.,

list of read/writes).

2. Define serial schedules, which
satisfy isolation by definition.

3. Define serializable schedules, which
allow for concurrency while
maintaining isolation.

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W1(P)

W2(P)

serial schedule serializable
schedule

unserializable
schedule

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

DBMS goals

Under the covers, a database
system can allow serializable
schedules that may not be serial,
but after execution have the same
outcome as some serial schedule.
● Allows multiple transactions to

run at the same time.
● Much better for performance!!

CS186 Build systems that
guarantee serializability for all
executed schedules.

46

T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

T1 T2

R2(P)

W2(P)

R1(J)

W1(P)

T1 T2

R2(P)

R1(J)

W1(P)

W2(P)

serial schedule serializable
schedule

unserializable
schedule

❌

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Two final goals of this lecture

● Briefly, how do databases build schedule that ensure serializability?
○ Strict Two-Phase Locking

● Conceptually, how do we know a schedule is serializable?
○ Conflicting actions

47

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Database locking

One of the most straightforward implementations that databases can use
to ensure serializability is called Strict Two-Phase Locking (Strict 2PL).
● This is a conservative method to guarantee serializability.
● It prevents certain serializable schedules and therefore may suffer

some performance hits, but overall there is no harm done because it is
always correct / satisfies ACID principle.

● What theoretical guarantees? See conflict serializability

Skipped slides: details on Strict 2PL.

48

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL
The ACID Principle
Isolation
Transaction Schedules
Serializability
Details:
● Strict 2Phase Locking
● Conflicting Actions

Extra Additional slides

Determining
Serializability:
Conflicting
Actions

49

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

How do we know if a schedule is serializable?

We like serializable schedules.
● Isolation, again: After the dust settles, transactions appear to have

happened in some order (which may seem “arbitraryˮ). However, the
order means that:
○ the txns appear to have followed a serial schedule.
○ that txns can be “rolled backˮ one-by-one.

50

Conflicting actions between
transactions will determine if a
schedule is serializable.

What does it mean???
Letʼs dive in!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Conflicting Actions

51

Def: Two actions conflict if:
● They are two different, concurrent transactions.
● They reference the same object.
● At least one is a write.
Alt Def: If T1 and T2 have conflicting actions, then every equivalent serial
schedule (i.e., with the same database outcome) must have T1 and T2 in
some specific order.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Which of the following are conflicting actions?

Alt Def: If T1 and T2 have conflicting actions, then every equivalent serial
schedule (i.e., with the same database outcome) must have T1 and T2 in
some specific order.

Suppose T1  T2 in a schedule,
i.e., T1 comes before T2.

52

W1(P)

R2(P)

T1 writes
Parth salary
as 110000

T2 reads
Parth salary
as 110000

R1(G)

W2(G)

T1 reads
Gabi salary
as 100000

T2 writes
Gabi salary
as 121000

W1(J)

W2(J)

T1 writes
Jonah salary
as 300000

T2 writes
Jonah salary
as 0

R1(G)

R2(G)

T1 reads
Gabi salary
as 121000

T2 reads
Gabi salary
as 121000

W1(J)

W2(P)

T1 writes
Jonah salary
as 0

T2 writes
Parth salary
as 200000

A. B. C. D. E.

For which of the following would the resulting flip
of actions mean that this transaction order would
change, i.e., that now T2 → T1? Select all. ��

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Select all for which the following is true:
Flipping the order of the two actions in T1
and T2 would result in a different database
outcome state.

ⓘ
Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6Ijk3OGVhMWViLWQ0MzEtNGE1Ny04NjU3LTlkMWFlMjhhMGEyNCIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTE4MzA2NjUyMTNfMCIsInRpbWVsaW5lIjpbeyJwb2xsUXVlc3Rpb25VdWlkIjoiNDg3NWZhYzgtYTU1NC00NDdiLWJhZDgtZTJiMGFjNjQ1ZTgxIiwic2hvd1Jlc3VsdHMiOnRydWV9XSwidHlwZSI6IlNsaWRvUG9sbCJ9
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

#transactions

Which of the following are conflicting actions?

54

W1(P)

R2(P)

T1 writes
Parth salary
as 110000

T2 reads
Parth salary
as 110000

R1(G)

W2(G)

T1 reads
Gabi salary
as 100000

T2 writes
Gabi salary
as 121000

W1(J)

W2(J)

T1 writes
Jonah salary
as 300000

T2 writes
Jonah salary
as 0

R1(G)

R2(G)

T1 reads
Gabi salary
as 121000

T2 reads
Gabi salary
as 121000

W1(J)

W2(P)

T1 writes
Jonah salary
as 0

T2 writes
Parth salary
as 200000

R2(P)

W1(P)

T2 reads
Parth salary
as ????

T1 writes
Parth salary
as ????

W2(G)

R1(G)

T2 writes
Gabi salary
as ????

T1 reads
Gabi salary
as ????

W2(J)

W1(J)

T2 writes
Jonah salary
as ????

T1 writes
Jonah salary
as ????

R2(G)

R1(G)

T2 reads
Gabi salary
as ????

T1 reads
Gabi salary
as ????

W2(P)

W1(J)

T2 writes
Parth salary
as ????

T1 writes
Jonah salary
as ????

Suppose T1 → T2 in a schedule. For which of the following would the resulting flip of
actions mean that this transaction order would change, i.e., that now T2 → T1? Select all.

hypothetically hypothetically hypothetically hypothetically hypothetically

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Which of the following are conflicting actions?

Alt Def: If T1 and T2 have conflicting actions, then every equivalent serial
schedule (i.e., with the same database outcome) must have T1 and T2 in
some specific order.

Suppose T1  T2 in a schedule,
i.e., T1 comes before T2.

55

For which of the following would the resulting flip
of actions mean that this transaction order would
change, i.e., that now T2 → T1? Select all.

W1(P)

R2(P)

T1 writes
Parth salary
as 110000

T2 reads
Parth salary
as 110000

R1(G)

W2(G)

T1 reads
Gabi salary
as 100000

T2 writes
Gabi salary
as 121000

W1(J)

W2(J)

T1 writes
Jonah salary
as 300000

T2 writes
Jonah salary
as 0

R1(G)

R2(G)

T1 reads
Gabi salary
as 121000

T2 reads
Gabi salary
as 121000

W1(J)

W2(P)

T1 writes
Jonah salary
as 0

T2 writes
Parth salary
as 200000

A. B. C. D. E.

review next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Which of the following are conflicting actions?

Alt Def: If T1 and T2 have conflicting actions, then every equivalent serial
schedule (i.e., with the same database outcome) must have T1 and T2 in
some specific order.

Suppose T1  T2 in a schedule,
i.e., T1 comes before T2.

56

W1(P)

R2(P)

T1 writes
Parth salary
as 110000

T2 reads
Parth salary
as 110000

R1(G)

W2(G)

T1 reads
Gabi salary
as 100000

T2 writes
Gabi salary
as 121000

W1(J)

W2(J)

T1 writes
Jonah salary
as 300000

T2 writes
Jonah salary
as 0

R1(G)

R2(G)

T1 reads
Gabi salary
as 121000

T2 reads
Gabi salary
as 121000

W1(J)

W2(P)

T1 writes
Jonah salary
as 0

T2 writes
Parth salary
as 200000

can be flipped! no conflicts!cannot be flipped! conflicting actions!

For which of the following would the resulting flip
of actions mean that this transaction order would
change, i.e., that now T2 → T1? Select all.

review next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

How do we know if a schedule is serializable?

We like serializable schedules.
● Isolation, again: After the dust settles, transactions appear to have

happened in some order (which may seem “arbitraryˮ). However, the
order means that:
○ the txns appear to have followed a serial schedule.
○ that txns can be “rolled backˮ one-by-one.

57

A schedule is serializable if all conflicting actions dictate a specific ordering of
the transactions (with no cycles)
● A topological sort on the graph of conflicts between transactions.

Conflicting actions between
transactions determine if a
schedule is serializable.

review next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

From the board

58review next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

The previous slide, in table form

59

T1:
R1(J)

W1(P)

R2(P)

W2(P)
T2:

3.
T1 T2

R2(P)

R1(J)

W2(P)

W1(P)

serializable
4.

T1 T2

R2(P)

R1(J)

W1(P)

W2(P)

unserializable
5.

T1 T2

R1(J)

R2(P)

W2(P)

W1(P)

R2(P)

W1(P)

W2(P)

W1(P)

R2(P)

W1(P)

W2(P)

W1(P)

R2(P)

W1(P) W2(P)

W1(P)

⚠

⚠

serializable

Schedule 4 The
two pairs of
conflicting actions
imply two
different orders to
T1 and T2.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions
The ACID Principle
Isolation and Serializability
Strict 2Phase Locking
Conflicting Actions
Extra Conflict Graphs
Extra Conflict Serializable
Weak Isolation
Extra Additional slides

Performance
Tradeoffs:
Snapshot
Isolation

60

for next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
You may think that transactions (and serializability) are very much in the
weeds of DBMS design, which we donʼt particularly implement in this course.
However…

Final thoughts: Why Should Data Engineers Know Transactions?

61

Inevitably you will update a database and manage data from transactional
databases!
● This means you should have a sense of its characteristics.

If your DB is slow for transactional reasons:
● You should understand why
● And how you can trade-off speed and “correctness,ˮ i.e., redefine your

transactions.
Finally, transaction concepts are also quite useful outside of databases.
● Examples: Queueing systems, e.g., RabbitMQ or Kafka.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

62

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Serialized Transactions: A summary

Serialized transactions ensure ACID properties of shared access, particularly
Isolation.
● Strict 2PL is a common implementation of serialization, though it is not the

only one.

63

Life is good?…Except…
● SELECT avg(gpa) FROM students;

○ Locks all students!
○ But we likely donʼt need this to be 100% correct!

● Sometimes we prefer to trade correctness for a little more
performance.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Enter: Weak Isolation.
● Each isolation can choose to be a “bit sloppy”...
● …as long as it doesn’t mess up other transaction’s choices to do so.
● The most common weak isolation implementation is snapshot isolation.
● This is a much weaker property of isolation than serialized transactions,

but it’s good enough when we prefer more concurrency/higher performance.

Approximating Serialized Transactions with Weak Isolation

Serialized transactions ensure ACID properties of shared access, particularly
Isolation.
● Strict 2PL is a common implementation of serialization, though it is not the

only one.

64

Life is good?…Except…
● SELECT avg(gpa) FROM students;

○ Locks all students!
○ But we likely don’t need this to be 100% correct!

● Sometimes we prefer to trade correctness for a little more performance.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Snapshot Isolation

65

Snapshot isolation is a weaker form of isolation than serialization, but itʼs
good enough when we prefer more concurrency/higher performance.
● Database system requirements: Keep multiple versions of tuples.

At transaction start: Take a “snapshot” of the database, off which to do reads/writes.
● snapshot reads: All reads of this transaction are from this snapshot.
● write validation: This transaction can commit if none of its writes conflict with other

transactions since the snapshot was taken.
○ If write-write conflicts, then abort this transaction.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Snapshot Isolation is Actually Popular

Isolation levels (both default and maximum) vary in support across different
database engines.
Marketing also varies!
● When Oracle says “Serializable,ˮ they actually are giving you Snapshot

Isolation!!

66

The maximum levels of many cloud DBMSs is
not always the theoretical maximum,
which is “serializable” transactions.
● Serializable: Google Cloud Spanner,

CockroachDB, Azure SQL Server
● Read Commit: Snowflake, AWS Aurora

○ For more about Read Commit and others,
check out the bonus slides.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions
The ACID Principle
Isolation and Serializability
Strict 2Phase Locking
Conflicting Actions
Extra Conflict Graphs
Extra Conflict Serializable
Weak Isolation
Extra Additional slides

67

Bonus Strict
2Phase
Locking: Details

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Database locking

How do databases ensure serializability?
One of the most straightforward implementations is called Strict Two-Phase
Locking (Strict 2PL).
● This is a conservative method to guarantee serializability.
● It prevents certain serializable schedules and therefore may suffer some

performance hits, but overall there is no harm done because it is always
correct / satisfies ACID principle.

● What theoretical guarantees? See conflict serializability

68

Locking is the process of ensuring that 2 conflicting actions happen in order.
● The first action that arrives should “lockˮ the shared object.
● The second action that arrives needs to wait until the first actionʼs transaction

completes.
● (weʼll define conflicting action more precisely later)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Strict Two-Phase Locking Strict 2PL

Phase 1:During the transaction, lock objects before
use.
Two types of locks:
● S lock: Before executing R1O, transaction T1

must acquire a shared lock on O.
● X lock: Before executing W1O, transaction T1

must acquire an exclusive lock on O.

69

Phase 2:At the end of the transaction (i.e.,
COMMIT or ROLLBACK,
release all locks at once.

lo

ck
s

he
ld

acquisitio
n

phase

time

release
all locks
at end of
xact

The Strict 2PL algorithm allows only
serializable schedules!
Note that schedules can result in deadlock.
See Discussion for more info/practice!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Strict Two-Phase Locking Strict 2PL, Practically

What objects are we locking?
● For most purposes, assume the DBMS is

locking individual records.
● It is sometimes useful to lock entire tables

at once (e.g., to change a schema/a default
attribute), but we wonʼt go into detail.

What does it mean to “acquireˮ or “releaseˮ a
lock?
● Under the hood: DBMS maintains some of

“lock tableˮ according to an internal
protocol.

● The system ensures that all transactions
follow the internal protocolʼs locking rules.
○ Analogy: red lights at intersections. You

trust the protocol. 70

lo

ck
s

he
ld

acquisitio
n

phase

time

release
all locks
at end of
xact

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions
The ACID Principle
Isolation and Serializability
Strict 2Phase Locking
Conflicting Actions
Extra Conflict Graphs
Extra Conflict Serializable
Weak Isolation
Extra Additional slides

Extra
Determining
Serializability:
Conflict Graphs

71

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Exercise] Determining Conflicting Actions

72

tim
e

1. 2.

🤔

What are the conflicting actions in each of the schedules?

T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Exercise] Determining Conflicting Actions

73

tim
e

1. 2.

What are the conflicting actions in each of the schedules?

T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

1. W1(P) and W2(P)
// write/write to same object

2. R1(G) and W2(G); // read/write same obj
W1(P) and R2(P) // read/write same obj

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Exercise] Determining Serializability

Suppose we have the following conflicting actions:
1. W1P) and W2P 2. R1G) and

W2G; W1P) and R2P
Which of the following schedules are serializable?

74

tim
e

1. 2.

A. Serializable schedule, i.e., equivalent to some serial schedule of T1 and
T2
B. Unserializable schedule, i.e., no equivalent serial schedule exists

🤔

Which of the following schedules are serializable?

T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

(no slido)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Exercise] Determining Serializability

Suppose we have the following conflicting actions:
1. W1P) and W2P 2. R1G) and

W2G; W1P) and R2P
Which of the following schedules are serializable?

75

tim
e

1. 2. T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

A. Serializable! Equivalent to
T2 happening before T1.

B. Unserializable! Conflicting
actions can’t be “flipped.”

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

An Algorithm for Determining Serializability

Serializability of a schedule can be determined by drawing its conflict graph.
● One node per transaction Ti.
● Edge from Ti to Tj if:

○ Action a in Ti conflicts with Action b in Tj, AND
○ Action a happens before Action b in the schedule.

76

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

An Algorithm for Determining Serializability

Serializability of a schedule can be determined by drawing its conflict graph.
● One node per transaction Ti.
● Edge from Ti to Tj if:

○ Action a in Ti conflicts with Action b in Tj, AND
○ Action a happens before Action b in the schedule.

77

tim
e

1. 2.

T1 T2

Given: Conflicting actions
1. W1(P) and W2(P)
2. R1(G) and W2(G);

W1(P) and R2(P)

Serializable! Unserializable!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

An Algorithm for Determining Serializability

Serializability of a schedule can be determined by drawing its conflict graph.
● One node per transaction Ti.
● Edge from Ti to Tj if:

○ Action a in Ti conflicts with Action b in Tj, AND
○ Action a happens before Action b in the schedule.

78

tim
e

1. 2.

T1 T2

Given: Conflicting actions
1. W1(P) and W2(P)
2. R1(G) and W2(G);

W1(P) and R2(P)

Serializable! Unserializable!

T1 T2

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

An Algorithm for Determining Serializability

79

tim
e

1. 2. T1 T2

R2(J)

R1(J)

W2(P)

W1(P)

T1 T2

R1(G)

R2(P)

W1(P)

W2(G)

Serializable! Equivalent to T2
happening before T1.

Unserializable! Conflicting
actions can’t be “flipped.”

If the conflict graph has no cycles (acyclic),
then the schedule is serializable. Otherwise,
it has cycles and it is unserializable.

T1 T2 T1 T2

Given: Conflicting actions
1. W1(P) and W2(P)
2. R1(G) and W2(G);

W1(P) and R2(P)

(proof later)

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

How do we know if a schedule is serializable?

We like serializable schedules.
● Isolation, again: For multiple concurrent transactions, after the dust

settles, transactions appear to have happened in some order (which may
seem “arbitraryˮ). However:
○ The order means that the transactions appear to have followed a serial

schedule.
○ The order means that transactions can be “rolled backˮ one-by-one.

80

Conflicting actions between
transactions will determine if a
schedule is serializable.

We did it!

The strategy for a determining serializability of a
given schedule of interleaved transactions:
1. Identify the conflicting actions.
2. Draw the conflict graph.
3. If the conflict graph is acyclic, then the schedule

is serializable. Else, it is unserializable.

��

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions
The ACID Principle
Isolation and Serializability
Strict 2Phase Locking
Conflicting Actions
Extra Conflict Graphs
Extra Conflict Serializable
Weak Isolation
Extra Additional slides

81

Extra
Formal
Terminology:
Conflict
Serializable

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions
Observations:
● The acyclic graph has a natural traversal order.
● An order of conflicting actions will guide us to an equivalent serial

schedule.
● To make #1ʼs serial schedule: Move all T2 actions first, move all T1 actions

second.
● We cannot do this “bulkˮ moving for #2, because of the cycle. So no

equiv. serial schedule!!

Why does acyclic conflict graph → serializability?

82

W1(P)

R2(P)

R1(G)

W2(G)

or
de

r

W1(P)

R2(P)

R1(G)

W2(G)1. 2.

T1 T2 T1 T2

Unserializable! Conflicting
actions can’t be “flipped.”

Serializable! Equivalent to T2
happening before T1.

no cycles! cycles!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Def A schedule is conflict serializable if and only if the conflict graph is
acyclic (has no cycles).

Formal Terminology: Conflict Serializable Schedule

Observations:
● The acyclic graph has a natural traversal order.
● An order of conflicting actions will guide us to an equivalent serial

schedule.
● To make #1ʼs serial schedule: Move all T2 actions first, move all T1 actions

second.
● We cannot do this “bulkˮ moving for #2, because of the cycle. So no

equiv. serial schedule!!

83

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Def A schedule is conflict serializable if and only if the conflict graph is
acyclic (has no cycles).

Formal Terminology: Conflict Serializable Schedule

Observations:
● The acyclic graph has a natural traversal order.
● An order of conflicting actions will guide us to an equivalent serial

schedule.
● To make #1ʼs serial schedule: Move all T2 actions first, move all T1 actions

second.
● We cannot do this “bulkˮ moving for #2, because of the cycle. So no

equiv. serial schedule!!

84

Lemma
If a schedule is conflict serializable, then it is serializable.

Proof:
● By definition of conflict serializable, the given schedule has an acyclic conflict graph.
● Any serial schedule that follows the edges of the given conflict graph has the same ordering of

conflicting actions and is therefore equivalent to the given schedule.
● By definition of serializable, the given schedule is therefore serializable.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Extra The converse is not true

Note that some serializable schedules are not necessarily conflict
serializable!
From R&G Database Management Systems, Third Edition, Section 17.1, Figure
17.1 (p.5501

85

This schedule is equivalent to executing the transactions serially in the order
T1, T2, T3, but it is not conflict equivalent to this serial schedule because the
writes of T1 and T2 are ordered differently.

T1 T2 T3
R(A)

W(A)

Commit

W(A)

Commit

W(A)

Commit

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Lecture 21, Data 101, Fall 2024

#transactions

Transactions
The ACID Principle
Isolation and Serializability
Strict 2Phase Locking
Conflicting Actions
Extra Conflict Graphs
Extra Conflict Serializable
Weak Isolation
Extra Additional slides

Extra Weak
Isolation: Read
Commit

86

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

“Read Committedˮ Isolation level
• What if we dropped each Shared lock right after reading

○ But kept our eXclusive locks until COMMIT/ROLLBACK?
• Prevents “dirtyˮ (uncommitted) reads from other transactions

○ Each read is of an unlocked/committed item!
• Doesnʼt promise much more!

• This isolation level is called Read Committed
○ Note: respects the locks of other, Strict 2PL transactions

87

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Does it help us?

BEGIN
 ISOLATION LEVEL serializable;
UPDATE students
 SET gpa = 4.0
 WHERE sid = 1234;
END;

BEGIN
 ISOLATION LEVEL read committed;
SELECT avg(gpa)
 FROM students;
END;

Locks every student
but doesn’t need to
be 100% correct!

Locks 1 student
but must be
serializable!

88

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

What could go wrong in Read Committed?
• Non-repeatable reads

○ Suppose you read a tuple twice in your transaction
○ Another transaction could run between the two reads and update it!

• Phantoms
○ Suppose you run a query with a non-key WHERE clause

■ E.g. “find all students with an A gradeˮ
○ If you run it again, some brand new tuples (phantoms) could appear!

• Staleness: Technically you could read a very old (but committed) “versionˮ
○ Still satisfies the definition!

89

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Repeatable Read Isolation
• Prevents dirty reads and non-repeatable reads

• A locking-based way to think about it:
○ All locks are held until COMMIT/ROLLBACK
○ But could be only tuple-level locks

• So phantoms are still possible!

90

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Snapshot Isolation is not (quite) Serializable

x = R
1
(G

0
)

y = R
2
(P

0
)

W
2
(P

1
 = 110000)

W
2
(G

1
 = 220000)

Time

Pat (T1)
Gabi (T2)

P0: 200000 G0: 100000

Set my salary to
be 10% bigger
than Gabi’s

Set my salary to
be 10% bigger
than Pat’s

NOT equivalent to either order (not serializable!)

Write skew anomaly: concurrent reads, and writes reflect the fact that they didn’t read
each other’s writes! 91

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

