Transactions

November 12, 2024

Data 101, Fall 2024 @ UC Berkeley
Lisa Yan, Michael Ball https://datalOl.org/fa24/

https://data101.org/fa24/

slido

OIO Join at slido.com
me #transactions

0 Click Present with Slido or install our Chrome extension to display joining
instructions for participants while presenting.

https://www.sli.do/features-google-slides?interaction-type=Sm9pbg%3D%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF2MXZNc2gwN2NCSlBCd1R6UW0zZkdKaFVKZjEzRmRGZjNrVVFpYm9LcDFBIiwic2xpZGVJZCI6IlNMSURFU19BUEkxNjA2ODI2Mzg2XzAiLCJ0eXBlIjoiU2xpZG9Kb2luaW5nIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

Updates create challenges

So far, we've largely focused on data science/read-only workloads.
In many settings, we need to also support updates.

e Single-user, one-at-a-time updates are easy.

e But are challenging. @

When updating data, we want correctness +
speed, particularly when users are accessing
and modifying the same relations.

Course/lecture goals:

#transactions

Today, a glance at

database internals:
e Understand challenges that updates cause transactions. More in

e Understand [related guarantees. CS186: Database Systems!

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Two Main Features We Expect from our Database System for Updates

Concurrency Control:

#transactions

e Many users query and update a database simultaneously.
e How do we avoid confusion / incorrect state?

Recovery:

e What happens when things fail?
e Many such failure modes: Cancel modification partway,
e app failure, DB engine failure, HW failure...

To understand these features, we need to
introduce the concept of transactions.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
What is a Transaction? T

Colloquially, a transaction in a database is a unit of work
that should appear to "happen together.”

Classic example: Debit/credit banking transaction, i.e.,
moving $1k from one account (1111) to another (9999).

#transactions

BEGIN
-— "debit" one account
UPDATE checking

SET amount = amount - 1000 These SQL commands need to

WHERE acctId = llll; uh n
appen together.
—— ""credit" the other account PP 9

UPDATE savings BEGIN, COMMIT are SQL TCL
SET amount = amount + 1000 (Transaction Control Language)
WHERE acctId = 9999; commands.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

What constitutes “"happening together”? Observation #1

BEGEN o A few observations: :
-- "debit" one account .) #transactions
UPDATE checking 1. We need both debit and credit to
SET amount = amount — 1000 happen, i.e., we should not have
WHERE acctId = 1111; partial transactions.
-- "credit"” the other account 2. .72

UPDATE savings
SET amount = amount + 1000 ,
WHERE acctId = 9999; (to be continued...)

oL

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

4 Data 4 Data Transaction Data [/4 Data
Definition Manipulation Control Query Control
Language Language Language _lLanguage Language

Note added 11/17/24: SET is not
included in the TCL (as mentioned in
Disc 12). The diagram says SET
Constraint is under the TCL.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

SQL TCL, Briefly Postgres BEGIN, START TRANSACTION,

END, ROLLBACK, ABORT, SAVEPOINT = ;

A transaction in SQL is a list of commands

sandwiched by BEGIN and : BEGIN #transactions
<command 1>

If BEGIN/COMMIT not specified, then most systems will
autocommit individual SQL commandes, i.e.,
auto-wrap each command in its own transaction.

<command n>
COMMIT

Generally (with slight syntax variation
across systems):

e BEGIN equivalent to START, BEGIN
WORK, START TRANSACTION, etc.

° equivalent to END, END
WORK, END TRANSACTION, efc.

OO0

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://www.postgresql.org/docs/9.1/sql-begin.html
https://www.postgresql.org/docs/9.1/sql-start-transaction.html
https://www.postgresql.org/docs/9.1/sql-commit.html
https://www.postgresql.org/docs/9.1/sql-end.html
https://www.postgresql.org/docs/9.1/sql-rollback.html
https://www.postgresql.org/docs/9.1/sql-abort.html
https://www.postgresql.org/docs/9.1/sql-savepoint.html

[extra] SQL TCL: Savepoints

Postgres BEGIN, START TRANSACTION, COMMIT,

END, ROLLBACK, ABORT, SAVEPOINT

Savepoints let you break your transactions
up into pieces. You can then “partially

" to a prior savepoint, or abort
altogether.

e ABORT
e SAVEPOINT save_name
e ROLLBACK TO SAVEPOINT save_name
o Undo any commands that happened
after the specified savepoint; and
o Implicitly destroy any savepoints
created after the specified one.

Use case: beyond the scope of this class,
but generally used with SQL conditionals or
as part of database constraints.

#transactions

BEGIN

UPDATE checking
SET amount = amount - 1000

WHERE acctId = 1234;

SAVEPOINT debit_done;

UPDATE savings
SET amount =

WHERE acctId =

amount + 1000
9999;

ROLLBACK TO SAVEPOINT debit_done;
UPDATE savings

SET amount =
WHERE acctId =
END

amount + 1000
4321,

(arbitrary example;
what is this doing?) 10

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://www.postgresql.org/docs/9.1/sql-begin.html
https://www.postgresql.org/docs/9.1/sql-start-transaction.html
https://www.postgresql.org/docs/9.1/sql-commit.html
https://www.postgresql.org/docs/9.1/sql-end.html
https://www.postgresql.org/docs/9.1/sql-rollback.html
https://www.postgresql.org/docs/9.1/sql-abort.html
https://www.postgresql.org/docs/9.1/sql-savepoint.html

transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

What constitutes “"happening together”? Observations

BEGIN
-- "debit" one account

UPDATE checking 1.

SET amount = amount — 1000
WHERE acctId = 1111;

-- "credit"” the other account 2.
UPDATE savings

SET amount = amount + 1000
WHERE acctId = 9999; 3
COMMIT :
These four properties, known 4.

as ACID, define how
transactions guarantee

(1) concurrency control and
(2) recovery.

oL

A few observations:

#transactions

We need both debit and credit to
happen, i.e., we should not have
partial transactions.

At the end of transactions, any
database constraints should still be
satisfied.

Even if another transaction happens
simultaneously, one should appear to
have finished “first.”

A committed transaction should
appear to have happened, even if
there is a power failure/reboot later.

12

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
ACID: Basic Guarantees LT

defines four properties of transactions that guarantee
and

#transactions

tomicity

onsistency

solation

urability
13

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
ACID: Basic Guarantees LT

defines four properties of transactions that guarantee
and

#transactions

tomicity Either all the commands are reflected in the database, or none are.
Ex: Both debit+credit should occur, or both should fail to occur.

onsistency If COMMIT succeeds, all the database integrity checks hold true.
(primary key/foreign keys, constraints, etc.)

solation Concurrent transactions should externally appear to run
sequentially, i.e., 2 concurrent transactions should not “see"” each
other’s intermediate results.

urability If COMMIT succeeds, all changes from the transaction persist,
even if there is a power failure or a reboot, until the transaction is

overwritten by a later transaction.
14

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[History] Why ACID? Unknown, but...

Principles of Transaction-Oriented Database Recovery ions

The Transaction Concept:
Virtues and Limitations

_ THEO HAERDER
Jim Gray

Tandem Computers Incorporated Fachbereich Informatik, University of Kaiserslautern, West Germany
19333 Vallco Parkway, Cupertino CA 95014
ANDREAS REUTER'

Hites 1251 IBM Research Laboratory, San Jose, California 95193 1983

Jim Gray, PhD, UC Berkeley,
. These four properties, atomicity, consist-
Industry/ Academic researcher. 1998 ency, isolation, and durability (AGID), de-
Tu ring Award Winner “For seminal sgnbe the major highlights of the transac-
s . tion paradigm, which has influenced many
contributions to database and aspects of development in database sys-
. . tems. We therefore consider the question
tra nsa.CUOn proces.SIr)g research and of whgther the transaction is suoported by
teChnlcaI |eadersh|p N System a particular system to be the ACID test Of

the system’s quality.

implementation.”

An acid test is any qualitative chemical or metallurgical assay which uses acid; most
commonly, and historically, the use of a strong acid to distinguish gold from base metals.

e Acid Tests, parties in San Francisco in the mid-1960s centered on use of the drug

LSD 15

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn
https://jimgray.azurewebsites.net/papers/thetransactionconcept.pdf
https://dl.acm.org/doi/10.1145/289.291
https://en.wikipedia.org/wiki/Acid_test_(disambiguation)

s
[Exercise] ACID [,

BEGIN
-- "debit" one account
UPDATE checking

SET amount = amount — 1000
WHERE acctId = 1111;
-- "credit"” the other account
UPDATE savings

SET amount = amount + 1000
WHERE acctId = 9999;
COMMIT

DI C,A

|, C, A, D

A C, I D

A, C, DI

Something else

f moow>

()OO

A few observations:
1.

#transactions

We need both debit and credit to
happen, i.e., we should not have
partial transactions.

2. Atthe end of transactions, any
database constraints should still be
satisfied.

3. Even if another transaction happens
simultaneously, one should appear to
have finished “first.”

4. A committed transaction should
appear to have happened, even if
there is a power failure/reboot Iatgr.

Match 1-4 with A, C, I, and D =

from the ACID Principle. 16

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

slido

Match 1-4 with A, C, 1, and D
O-=] from the ACID Principle.

0 Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjgwYWRjMjlkLTE3NGUtNDAzZC04ZTE3LTBhM2YxMWQ3OTBlNSIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTM0NDEwNzg5M18wIiwidGltZWxpbmUiOlt7InBvbGxRdWVzdGlvblV1aWQiOiJmMDkwZWFmZC1hYjM3LTRkOGEtODMwNC1iNDE0YzMxZTU2MDMiLCJzaG93UmVzdWx0cyI6dHJ1ZX1dLCJ0eXBlIjoiU2xpZG9Qb2xsIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

s
[Solution] ACID P

BEGIN
-- "debit" one account
UPDATE checking

SET amount = amount — 1000
WHERE acctId = 1111;
-- "credit"” the other account
UPDATE savings

SET amount = amount + 1000
WHERE acctId 9999
COMMIT

oL

A few observations:
A. We need both debit and credit to

#transactions

happen, i.e., we should not have
partial transactions.

At the end of transactions, any
database constraints should still be
satisfied.

Even if another transaction happens
simultaneously, one should appear to
have finished “first.”

A committed transaction should
appear to have happened, even if
there is a power failure/reboot later.

18

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
How does the database address each ACID property? e

#transactions

Atomicity
If COMMIT succeeds, all the database integrity checks hold true.
(primary key/foreign keys, constraints, etc.)

Isolation
Standard database checks (relatively efficient to check for
core things like attribute types, keys, constraints, etc.)

Durability

19

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
How does the database address each ACID property? e

#transactions

Either all the commands are reflected in the database, or none are.
Ex: Both debit+credit should occur, or both should fail to occuir.

Consistency The database’s internal recovery system.

After a crash:
e Redo all committed work; and

Isolation e Undo all uncommitted work!

See CS186 for the implementation. Devil is in the details!

If COMMIT succeeds, all changes from the transaction persist,

even if there is a power failure or a reboot, until the transaction is

overwritten by a later transaction.

20

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
How does the database address each ACID property? e

#transactions

Atomicity

Consistency

Concurrent transactions should externally appear to run
sequentially, i.e., 2 concurrent transactions should not “see"” each
other's intermediate results.

Durability
Provided by concurrency control, a component of the
database. We'll grasp the intuition today!!

21

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Isolation: Concurrent transactions
should externally appear to run
sequentially.

e If the database receives these
transactions simultaneously, we
should be able to successfully
execute all three as if they
happened “in isolation.”

#transactions

Hire Mercy as the
new VP of
Engineering!

Prepare tax
projections for
the 2"? quarter!

Move the entire
payroll of the London
Office to the
Cambridge Office!

23

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Prepare tax
projections for the
2"d quarter!

The challengg: HO\{Y dp we gxe::ute Hire Mercy as the ove the e
these transactions "in isolation” but new VP of P heles O]I;ig/e i
“concurrently”? With one single Engineering! 0

i the Cambridge Office!
machine? Q

Assumption: the precise order of
these three transactions doesn't
matter. What matters is that they
appeared to have been executed
by the DBMS in some order.

24

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Prepare tax
projections for the
2"d quarter!

Q,
©,
o
@

Fgr S|mpI|C|ty, we will limit our Hire Mercy as the
discussion to reads and writes of new VP of
individual "objects": Engineering!

Move the entire payroll
of the London Office to
the Cambridge Office!

“Objects” := records (for now)

i-th transaction has Read from O:
R(0)

i-th transaction has Write to O:
W(O [= value])

25

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Determining Transaction Schedules that Maintain Isolation

Our goal: Understand how multiple transactions can run it
performance) but also (for ACID). Hransactions

To do so, we'll define the following:

1. Define transaction schedules (i.e.,
list of read/writes).

2. Define serial schedules, which
satisfy isolation by definition.

3. Define serializable schedules,
which allow for concurrency while

maintaining isolation.

27

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Example: Two Transactions

#transactions

-— set Parth’s salary to 10% more -— set Parth’s salary to 10% more
-— than Jonah’s
employee employee
SET salary = (SELECT salaryx*1l.1 SET salary = (SELECT salaryx*1.1
FROM employee FROM employee
WHERE name='Jonah') WHERE name='Parth')
WHERE name = 'Parth'; WHERE name = ‘Parth';

T: RO T.: RO
" w (P) 2" W, (P)

28

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Transaction Schedules 3 o

A transaction schedule is a ordered list of actions from a set of
transactions.

R,()

\(P)

time

R,(P)

»(P)

#transactions

While there are many possible transaction
schedules, a DBMS will pick one with which
to schedule and execute read/write actions.

A proposed
Transaction Schedule
of TTand T2

29

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Transaction Schedules LT

A transaction schedule is a ordered list of actions from a set of ;
transaCtIOnS #transactions

The ordered schedule of actions (reads from/writes to objects)
represents the actual/potential in time, as seen by
the DBMS.

R,0) time slot 1

2l [WV.(P) time slot 2

) R,(P) time slot 3
\ »(P) time slot 4 30

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Transaction Schedules P

A transaction schedule is a ordered list of actions from a set of i
transaCtIOnS #transactions

e The ordered schedule of actions (reads from/writes to objects)

represents the actual/potential execution sequence in time, as seen by
the DBMS.

The in which two actions from the same transaction T are
scheduled must reflect the

@ T - RO
R () = lw, Py
® T . [RP)
R,(P) Q 2 (P)

\/ 2(P) 31

time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Determining Transaction Schedules that Maintain Isolation

Our goal: Understand how multiple transactions can run it
performance) but also (for ACID). Hransactions

To do so, we'll define the following:

V1 Define transaction schedules (i.e.,
list of read/writes).

2. Define serial schedules, which
satisfy isolation by definition.

3. Define serializable schedules,
which allow for concurrency while

maintaining isolation.

32

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Serial Schedules T

A serial schedule is a transaction schedule for which
actions from different transactions are not interleaved.

#itransactions

TR
W, (P
R,() R,(P) R,(P) L
W (P W._(P T 20
qé |() 2() R|(J) 2' Wz(P)
R,(P) R,() W, (P)
v W, (P) W, (P) W, (P)
serial schedule serial schedule not a serial schedule;
transactions interleaved
_ J
Y
Serial schedules exhibit , because

actions of a transaction are executed together and

separate from those in other transactions. .

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Do these schedules satisfy the isolation property?

1. 2.

R,0)

W, (P)

time

R,(P)

W, (P)

3.
R,(P) R,(P)
W, (P) R,0)
R,0) W, (P)
W, (P) W, (P)

Isolation: Concurrent transactions
should externally appear to run
sequentially, i.e., 2 concurrent
transactions should not (appear to)

"see”" each other's intermediate results.

TI:

T2:

Which of these three schedules
satisfy the isolation property?
Select all.

#itransactions

R,0)

W, (P)

R,(P)

W,(P)

[C
Pl |\
J
\

®)
®)

“’..—‘.:’v’:“ 3 4

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

slido

> Which of these three
schedules satisfy the
isolation property? Select all.

0 Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjUzMGVmYTZhLTg1OTgtNDU0YS1hNGI0LWVmZjg4YWE2ODIwMiIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTE2NjI1MTUwOTBfMCIsInRpbWVsaW5lIjpbeyJwb2xsUXVlc3Rpb25VdWlkIjoiYmMzOTU3MTctY2MyOS00MzhlLWIyYzItMTAxYTM0ZWYzYzJkIiwic2hvd1Jlc3VsdHMiOnRydWV9XSwidHlwZSI6IlNsaWRvUG9sbCJ9
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Do these schedules satisfy the isolation property? -k

1. 2. 3.
T
R, () R,(P) R,(P)
2l |W,P) W,(P) R,0)
h R,(P) R, () W, (P)
v W, (P) W, (P) W, (P)
Yes Yes Yes!

T2:

#itransactions

R,0)

W, (P)

R,(P)

W,(P)

Isolation. If we execute a given

schedule, from the DBMS's POV,
individual transactions appear to
be executed sequentially.

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
All three schedules satisfy the isolation property! ek

1 . 2 . 3 #itransactions
T [0
R,0) R,(P) R, (P) Wi
T . R,(P)
é W,(P) WZ(P) RI(J) 2 [w.m)
Ry(P) R,0) W,(P)
v W, (P) W, (P) W, (P)
\ J

It is okay that these two serial schedules
produce

Isolation. If we execute a given
schedule, from the DBMS's POV,
individual transactions appear to

be executed sequentially. 38

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

1 . 2 . 3 #transactions
RO
R,(P) R,(P) e
E W, (P) R,() T, :v(:;
R,(0) W, (P)
v W, (P) W, (P)

Despite the interleaving, this schedule
has an database outcome to
one of the serial schedules!

Isolation. If we execute a given
schedule, from the DBMS's POV,
individual transactions appear to

be executed sequentially. 39

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

1. 2. 3. #itransactions

. RO
I* | w,
R,(P) R,(P) @
. RaP)
E W, (P) R,() T.: e
R,0) W,(P)
' W, (P) W, (P)
A
~ r
Despite the interleaving, this schedule Schedule 3 is a serializable schedule:
has an equivalent database outcome to a transaction schedule whose
one of the serial schedules! database outcome is

40

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Unserializable Schedules T

time

3. I 4.
T T, R

R,(P) R,(P) R,(P)
W, (P) R,J) R,J)
R,(0) W, (P) W, (P)
W, (P) W, (P) W, (P)
serial schedule serializable A
schedule

T2:

#itransactions

R,0)

W, (P)

R,(P)

W,(P)

Not all schedules are serializable! This
is an unserializable schedule, because
there is no serial equivalent, and
therefore transactions do not appear

isolated.

iy

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

oy

Whal ke 59V jo ¢ogs What we Say fo
snger! Tive had it!
Oskg / %uygf #GU;arbaqe.’

- tay 04Y
ana‘erg/ﬁﬁd Girger 2 /*55(,?‘/ o

#itransactions

(®) Hlaw
3 LAY

L]

42

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Announcements

43

transactions

Transactions/TCL

The ACID Principle
Isolation

Transaction Schedules

Serializability
Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Summary so far 3t !
Summarysofar __________ pE

Our goal: Allow multiple transactions to run (for performance) [=l -:-"‘l
but also (for ACID). Hransaciions
To do so, we've traced the following
steps: L T, L T, T, T,
1. Define transaction schedules (i.e., R,(P) R,(P) R,(P)
list of read/writes).
fwrites) W, | [R0) R,0)
2. Define serial schedules, which i ML AL
. Define serial schedules, whic
e . L W (P W (P W, (P
satisfy isolation by definition. ®) ®) ")
serial schedule serializable unserializable
schedule schedule

3. Define serializable schedules, which
allow for concurrency while
maintaining isolation.

45

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

DBMS goals

Under the covers, a database
system can allow serializable
schedules that may not be serial,
but after execution have the same
outcome as some serial schedule.

e Allows multiple transactions to
run at the same time.
e Much better for performance!!

CS186: Build systems that
guarantee serializability for all
executed schedules.

#itransactions

TI T2
R,(P)
W,(P)
R,0)
W, (P)

serial schedule

T, T,
R,(P)
R,d) R,
W,(P) | |W,(P)
W, (P) W,(P)
serializable unserializable
schedule schedule

46

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Two final goals of this lecture it

e Briefly, how do databases build schedule that ensure serializability?
o Strict Two-Phase Locking

e Conceptually, how do we know a schedule is serializable?
o Conflicting actions

#transactions

47

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Database locking At ok
Databaselocking |

. . . - [] .5
One of the most straightforward implementations that databases can use [1 --""
to ensure serializability is called Strict Two-Phase Locking (Strict 2PL). e

e This is a conservative method to guarantee serializability.

e It prevents certain serializable schedules and therefore may suffer
some performance hits, but overall there is no harm done because itis
always correct / satisfies ACID principle.

e \What theoretical guarantees? See

Skipped slides: details on Strict 2PL.

48

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Determining
Serializability:
Conflicting
Actions

Lecture 21, Data 101, Fall 2024

#transactions

Transactions/TCL

The ACID Principle
|solation

Transaction Schedules
Serializability

Details:

e Strict 2-Phase Locking
e Conflicting Actions

[Extra] Additional slides

49

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

How do we know if a schedule is serializable?

We like serializable schedules.

° , again: After the dust settles, transactions appear to have
happened in some order (which may seem "“arbitrary”). However, the
order means that:

o the txns appear to have followed a serial schedule.
o that txns can be “rolled back” one-by-one.

#transactions

Conflicting actions between
transactions will determine if a
schedule is serializable.

What does it mean???
Let's dive in!

50

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Conflicting Actions P

Def: Two actions conflict if:

e They are two different, concurrent transactions.
e They reference the same object.
e At least one is a write.

: If T1and T2 have conflicting actions, then every
(i.e., with the same database outcome) must have T1and T2 in

#transactions

some

51

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Which of the following are conflicting actions?

: If T1and T2 have conflicting actions, then every
(i.e., with the same database outcome) must have T1and T2 in

#transactions

some

For which of the following would the resulting flip
Suppose T1 = T2 in a schedule, |of actions mean that this transaction order would
i.,e. T1 comes before T2. change, i.e., that now T2 — T1? Select all.

WI(P) T1 writes RI(G) T1 reads W|(J) T1 writes RI(G) T1 reads W.U) T71 writes

Parth salary Gabi salary Jonah salary Gabi salary Jonah salary

as 110000 as 100000 as 300000 as 121000 as 0

T2 reads T2 writes T2 writes T2 reads T2 writes
R2(P) Parth salary W,(6) Gabi salary W2(J) Jonah salary R2(G) Gabi salary W,(P) Parth salary

as 110000 as 121000 as 0 as 121000 as 200000
A. B. C. D. E.

52

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

slido

Select all for which the following is true:
Flipping the order of the two actions in T1
and T2 would result in a different database
outcome state.

0 Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6Ijk3OGVhMWViLWQ0MzEtNGE1Ny04NjU3LTlkMWFlMjhhMGEyNCIsInByZXNlbnRhdGlvbklkIjoiMXYxdk1zaDA3Y0JKUEJ3VHpRbTNmR0poVUpmMTNGZEZmM2tVUWlib0twMUEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTE4MzA2NjUyMTNfMCIsInRpbWVsaW5lIjpbeyJwb2xsUXVlc3Rpb25VdWlkIjoiNDg3NWZhYzgtYTU1NC00NDdiLWJhZDgtZTJiMGFjNjQ1ZTgxIiwic2hvd1Jlc3VsdHMiOnRydWV9XSwidHlwZSI6IlNsaWRvUG9sbCJ9
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii

Suppose T1 — T2 in a schedule. For which of the following would the resulting flip of
actions mean that this transaction order would change, i.e., that now T2 — T1? Select all. |

W, (P)

R,(P)

T1 writes
Parth salary
as 110000

T2 reads
Parth salary
as 110000

hypothetically

R,(P)

T2 reads

Parth salary
as ?777?

T1 writes

Parth salary
as 7777

R(G)

W,(G)

T1 reads
Gabi salary
as 100000

T2 writes
Gabi salary
as 121000

hypothetically

W,(G)

R(G)

T2 writes

Gabi salary
as 7?7?77

T1 reads

Gabi salary
as 7777

W.0)

W,0)

T1 writes
Jonah salary
as 300000

T2 writes
Jonah salary
as 0

hypothetically

W,0)

W,0)

T2 writes

Jonah salary
as 7?7?77

T1 writes

Jonah salary
as 7777

R(G)

R,(G)

T1 reads
Gabi salary
as 121000

T2 reads
Gabi salary
as 121000

hypothetically

R,(G)

R,(G)

T2 reads

Gabi salary
as ?7?77?

T1 reads

Gabi salary
as ?7?77?

W0

W, (P)

e
T1 W#H%[éactions
Jonah salary
as 0

T2 writes
Parth salary
as 200000

hypothetically

W, (P)

W,0)

T2 writes

Parth salary
as ?7?77?

11 writes
Jonah salary
as 7777 54

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Which of the following are conflicting actions?

: If T1and T2 have conflicting actions, then every
(i.e., with the same database outcome) must have T1and T2 in

#transactions

some

For which of the following would the resulting flip
Suppose T1 = T2 in a schedule, |of actions mean that this transaction order would
i.,e. T1 comes before T2. change, i.e., that now T2 — T1? Select all.

WI(P) T1 writes RI(G) T1 reads W|(J) T1 writes RI(G) T1 reads W.U) T71 writes

Parth salary Gabi salary Jonah salary Gabi salary Jonah salary
as 110000 as 100000 as 300000 as 121000 as 0
T2 reads T2 writes T2 writes T2 reads T2 writes
R2(P) Parth salary W,(6) Gabi salary W2(J) Jonah salary R2(G) Gabi salary W,(P) Parth salary
as 110000 as 121000 as 0 as 121000 as 200000
Oo""oTTo" - E.
review next time o5

@oEe

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Which of the following are conflicting actions?

: If T1 and T2 have conflicting actions, then every o
(i.e., with the same database outcome) must have T1and T2 in =~ "
some

For which of the following would the resulting flip
Suppose T1 = T2 in a schedule, |of actions mean that this transaction order would
i.,e. T1 comes before T2. change, i.e., that now T2 — T1? Select all.

T1 writes T1 reads T1 writes T1 reads T1 writes
W, (P) Parth salary R,(G) Gabi salary W.0) Jonah salary R,(G) Gabi salary W.0) Jonah salary

as 110000 as 100000 as 300000 as 127000 as O

Rz(P) T2 reads W2(G) T2 writes Wz(J) T2 writes Rz(G) T2 reads WZ(P) T2 writes

Parth salary Gabi salary Jonah salary Gabi salary Parth salary
as 110000 as 121000 as0 as 121000 as 200000
\ J . J
Y Y
cannot be flipped! conflicting actions! can be flipped! no conflicts! 56

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
How do we know if a schedule is serializable? >

We like serializable schedules.

e Isolation, again: After the dust settles, transactions appear to have
happened in some order (which may seem "arbitrary”). However, the
order means that:

o the txns appear to have followed a serial schedule.
o that txns can be “rolled back"” one-by-one.

#transactions

A schedule is serializable if all conflicting actions dictate a specific ordering of
the transactions (with no cycles)

e A topological sort on the graph of conflicts between transactions.

Conflicting actions between
transactions determine if a

schedule is serializable.

review next time 57

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

From the board

(/()) /D)

un S@mo\(rmm

= e

review next time

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
The previous slide, in table form ek

serializable unserializable serializable =
— . — [
R,(P) |R,(P) il
R
R,0) / RO/ R,(P) T e
VG e ¥ W,(P)
(P) 14w, (P) P) K
Schedule 4: The
two pairs of
conflicting actions
R,(P) W._(P) R,(P) (P) R,(P) W.(P) | imply two
* * * ! ‘ * * different orders to
@ @ IR AG) @ (] (Thand Tz

59

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

for next time

Performance
Tradeoffs:
Shapshot
Isolation

Lecture 21, Data 101, Fall 2024

#transactions

Transactions

The ACID Principle
Isolation and Serializability
Strict 2-Phase Locking
Conflicting Actions

[Extra] Conflict Graphs
[Extra] Conflict Serializable
Weak Isolation

[Extra] Additional slides

60

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Final thoughts: Why Should Data Engineers Know Transactions?

You may think that transactions (and serializability) are very much in the

weeds of DBMS design, which we don't particularly implement in this course=*
However...

Inevitably you will update a database and manage data from transactional
databases!

e This means you should have a sense of its characteristics.

If your DB is slow for transactional reasons:

e You should understand why

e And how you can trade-off speed and “correctness,” i.e., redefine your
transactions.

Finally, transaction concepts are also quite useful outside of databases.
e Examples: Queueing systems, e.g., RabbitMQ or Kafka.

61

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

62

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Serialized Transactions: A summary Eaks
I_.n-.. . u

. -:t .5
Serialized transactions ensure ACID properties of shared access, particularly Bl
Isolation.

#transactions

e Strict 2PL is a common implementation of serialization, though it is not the
only one.

Life is good?...Except...

e SELECT avg(gpa) FROM students;
o Locks all students!
o But we likely don't need this to be 100% correct!
e Sometimes we prefer to trade for a little more

63

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Approximating Serialized Transactions with Weak Isolation

Serialized transactions ensure ACID properties of shared access, particularly
Isolation.

#itransactions

e Strict 2PL is a common implementation of serialization, though it is not the
Life srpagidelxcept...
e SELECT avg(gpa) FROM students;
o Locks all students!
o But we likely don't need this to be T00% correct!
e Sometimes we prefer to trade correctness for a little more performance.

Enter: Weak Isolation.

Each isolation can choose to be a “bit sloppy”...

..as long as it doesn't mess up other transaction's choices to do so.

The most common weak isolation implementation is :
This is a much weaker property of isolation than serialized transactions,

but it's good enough when we prefer more concurrency/higher performance.

64

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

. Ot
Snapshot Isolation LT

Snapshot isolation is a weaker form of isolation than serialization, but it's
good enough when we prefer more concurrency/higher performance.

e Database system requirements: Keep multiple versions of tuples.

#transactions

. Take a “snapshot” of the database, off which to do reads/writes.

e shnapshot reads: All reads of this transaction are from this snapshot.

e write validation: This transaction can commit if none of its writes conflict with other
transactions since the snapshot was taken.
o If write-write conflicts, then abort this transaction.

65

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

#transactions

database engines.
Marketing also varies!
e When Oracle says “Serializable,” they actually are giving you Snapshot

|SO|at|0n!! Datflbase Default Maximum
The maximum levels of many cloud DBMSs is Ao I RC
not always the theoretical maximum, Clusaix CLX 4100 | RR RR
. . “ . .] . G lum 4.1 RC S
which is “serializable” transactions. BMUB? lotesos | oS S
IBM Informix 11.50 Depends S
° . Google Cloud Spanner, MySQLSS RR S
CockroachDB, Azure SQL Server b SOL Secvnc 2012 g £
e Read Commit: Snowflake, AWS Aurora Ot . RO 7
. racle ber! eey
o For more about Read Commit and others, Oracle Berkeley DBJE | RR s
. ostgres 9.2.

check out the bonus slides. SAP HANA RC SI
ScaleDB 1.02 RC RC
VoltDB S S

RC: read committed, RR: repeatable read, SI: snapshot isola-

tion, S: serializability, CS: cursor stability, CR: consistent read

Table 2: Default and maximum isolation levels for ACID and 66
NewSQL databases as of January 2013 (from [9]).

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Bonus] Strict
2-Phase
Locking: Details

Lecture 21, Data 101, Fall 2024

#transactions

Transactions

The ACID Principle
Isolation and Serializability
Strict 2-Phase Locking
Conflicting Actions

[Extra] Conflict Graphs
[Extra] Conflict Serializable
Weak Isolation

[Extra] Additional slides

67

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Database locking LT

How do databases ensure serializability?

One of the most straightforward implementations is called Strict Two-Phase

Locking (Strict 2PL).

e This is a conservative method to guarantee serializability.

e It prevents certain serializable schedules and therefore may suffer some
performance hits, but overall there is no harm done because it is always

correct / satisfies ACID principle.
e What theoretical guarantees? See conflict serializability

#itransactions

Locking is the process of ensuring that 2 conflicting actions happen in order.

e The first action that arrives should "“lock” the shared object.

e The second action that arrives needs to wait until the first action’s transaction
completes.

o (we'll define more precisely later)

68

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Strict Two-Phase Locking (Strict 2PL)

Phase 1:During the transaction, lock objects before

use.
Two types of locks: o
e Slock: Before executing R1(0), transaction Tf:)
must acquire a on O. x
e Xlock: Before executing W1(0), transaction 'F_fl
must acquire an on O. **

Phase 2: At the end of the transaction (i.e.,
COMMIT or ROLLBACK),
release all locks at once

A

#transactions

release
all locks
at end of
xact

time

>

The Strict 2PL algorithm allows only
serializable schedules!

Note that schedules can result in deadlock.
See Discussion for more info/practice! 69

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Strict Two-Phase Locking (Strict 2PL), Practically

What objects are we locking?

e For most purposes, assume the DBMS is
locking

e Itis sometimes useful to Iock entire tables
at once (e.g., to change a schema/a default
attribute), but we won't go into detail.

What does it mean to “acquire” or “release"” a
lock?

e Under the hood: DBMS maintains some of
“lock table" according to an

e The system ensures that all transactions
follow the internal protocol’s locking rules.
o Analogy: red lights at intersections. You

trust the protocol.

locks held

#transactions

release
all locks
at end of
xact

time

>

70

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Extra]
Determining
Serializability:
Conflict Graphs

Lecture 21, Data 101, Fall 2024

#transactions

Transactions

The ACID Principle
Isolation and Serializability
Strict 2-Phase Locking
Conflicting Actions

[Extra] Conflict Graphs
[Extra] Conflict Serializable
Weak Isolation

[Extra] Additional slides

71

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Exercise] Determining Conflicting Actions

What are the conflicting actions in each of the schedules?

#transactions

1 TI T2 2 TI T2
R,() R,(G)
o R,() R,(P)
= W,(P) W, (P)
W, (P) W,(G)
\/
°5

)

72

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Exercise] Determining Conflicting Actions

What are the conflicting actions in each of the schedules?

#transactions

1. W1(P) and W2(P) 2. R1(G) and W2(G); // read/write same obj
// write/write to same object W1(P) and R2(P) // read/write same obj
1. L 2. T, L
R,0) R,(G)
o R,() R,(P)
s W,(P) W, (P)
W, (P) W,(G)
v

73

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
[Exercise] Determining Serializability LT

Suppose we have the following conflicting actions:

#transactions

1. W1(P) and W2(P) 2. R1(G) and
Which of the following schedules are serializable?
“Which of the Tollowing schedules are serializable?
1. L 2. T, L
R,0) R,(G)
o R,0) R,(P)
s W,(P) W, (P)
W, (P) W,(G)
v
NS
A. Serializable schedule, i.e., equivalent to some serial schedule of T1 and g\.
12 47
(no'slido)

B. Unserializable schedule, i.e., no equivalent serial schedule exists

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
[Exercise] Determining Serializability ks

Suppose we have the following conflicting actions:

1. W1(P) and W2(P) 2. R1(G) and
W2(G): W1(P) and R2(P)

Which of the following schedules are serializable?

#transactions

1. L 2. T, L
R,0) R,(G)
o R,() R,(P)
s W,(P) W, (P)
W, (P) W,(G)
v
A. Serializable! Equivalent to B. Unserializable! Conflicting
T2 happening before T1. actions can't be “flipped.” 75

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

oN

Serializability of a schedule can be determined by drawing its conflict graphiEI o
#transactions
e One node per transaction Ti.
e Edge from Tito Tj if:
o Actionain Ti with Action b in Tj, AND
o Action a happens Action b in the schedule.

76

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

o et
Serializability of a schedule can be determined by drawing its conflict graphl=l oo
#transactions
e One node per transaction Ti. Given: Conflicting actions
e Edge from Tito Tj if: 1. WI(P)and W2(P)
o Actionain Ti with Action b in Tj, AND 2. R1(G) and W2(G);
o Action a happens Action b in the schedule. W1(P) and R2(P)
1. T,
R,J)
© R,J)
£
~ svo| () ()
W, (P)
\/
Serializable! Unserializable!

77

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Shalor
- r -h
Serializability of a schedule can be determined by drawing its conflict graphl=l o0
#transactions
e One node per transaction Ti. Given: Conflicting actions
e Edge from Tito Tj if: 1. W1(P)and W2(P)
o Actionain Ti with Action b in Tj, AND 2. R1(G) and W2(G);
o Action a happens Action b in the schedule. W1(P) and R2(P)

2.
R,(G)
R,P) |

we * ()
W,(G)

time

Unserializable!

78

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

If the conflict graph has no cycles (acyclic), (proof later) s
then the schedule is serializable. Otherwise, Given: Conflicting actions
it has cycles and it is unserializable. 1. W1(P)and W2(P)

2. R1(G) and W2(G);
W1(P) and R2(P)

1. L. 2.
R,0) R(G) 1™

o R,() 2(P)
ave|)) wel) (0
W, (P) W,(G)
v
Serializable! Equivalent to T2 Unserializable! Conflicting
happening before T1. actions can't be “flipped.” 79

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
How do we know if a schedule is serializable? ¥

We like serializable schedules.

#itransactions

e Isolation, again: For multiple concurrent transactions, after the dust

settles, transactions appear to have happened in some order (which may
seem "arbitrary”). However:

o The order means that the transactions appear to have followed a serial
schedule.

o The order means that transactions can be “rolled back” one-by-one.

We did it!

The strategy for a determining serializability of a
given schedule of interleaved transactions:

Conflicting actions between 1. Identify the conflicting actions.
transactions will determine if a 2. Draw the conflict graph.
selraale s eyl 3. If the conflict graph is acyclic, then the schedule

is serializable. Else, it is unserializable. 50

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Extra]
Formal
Terminology:
Conflict
Serializable

Lecture 21, Data 101, Fall 2024

#transactions

Transactions

The ACID Principle
Isolation and Serializability
Strict 2-Phase Locking
Conflicting Actions

[Extra] Conflict Graphs
[Extra] Conflict Serializable
Weak Isolation

[Extra] Additional slides

81

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Observations:
e The acyclic graph has a natural traversal order.

#transactions

e An will guide us to an equivalent serial
schedule.
e To make #1'e caria| schedule: Move all T? actinne firet move all T1 actions
SE
o (W “bulk*Trieyving for #: » cycle. So no
ec lule’
ORO ORO
(@]
v no cycles! cycles!
Serializable! Equivalent to T2 Unserializable! Conflicting
happening before T1. actions can't be “flipped.” 82

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Formal Terminology: Conflict Serializable Schedule

Observations:
e The acyclic graph has a natural traversal order.

#transactions

e An will guide us to an equivalent serial
schedule.

e To make #1's serial schedule: Move all T2 actions first, move all T1 actions
second.

Refye cArsehedulgiiseonflictserializablef and anly ifithe-conflictgraph is
sbeilhasnaieyglesle!

83

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Formal Terminology: Conflict Serializable Schedule

Observations:
e The acyclic graph has a natural traversal order.

#transactions

e An will guide us to an equivalent serial
schedule.

e To make #1's serial schedule: Move all T2 actions first, move all T1 actions
second. | o | | |

Refiye ~Aschedulgiis-eonflict serializablejf and.only Hithe.capflictgraph is
Lemma

If a schedule is conflict serializable, then it is serializable.

Proof:

e By definition of conflict serializable, the given schedule has an acyclic conflict graph.

e Any serial schedule that follows the edges of the given conflict graph has the of
conflicting actions and is therefore to the given schedule.

e By definition of serializable, the given schedule is therefore serializable.

84

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
[Extral The converse is not true P

Note that some serializable schedules are not necessarily conflict
serializable!

From R&G Database I\/ICH--Itlon Section 171, Figure

171 (p.550-1):

#transactions

W(A)
Commit
W(A)
Commit
W(A)

Commit

This schedule is equivalent to executing the transactions serially in the order
T1, T2, T3, but it is not conflict equivalent to this serial schedule because the

writes of T1and T2 are ordered differently. .

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

[Extra] Weak
Isolation: Read
Commit

Lecture 21, Data 101, Fall 2024

#transactions

Transactions

The ACID Principle
Isolation and Serializability
Strict 2-Phase Locking
Conflicting Actions

[Extra] Conflict Graphs
[Extra] Conflict Serializable
Weak Isolation

[Extra] Additional slides

86

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
"Read Committed” Isolation level 2

* What if we dropped each Shared lock right after reading
o But kept our eXclusive locks until COMMIT/ROLLBACK?
* Prevents “dirty” (uncommitted) reads from other transactions

#transactions

o Each read is of an unlocked/committed item!
* Doesn't promise much more!

* This isolation level is called Read Committed
O Note: respects the locks of other, Strict 2PL transactions

87

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Does it help us? et

#transactions

Locks every student

Locks | student but doesn’t need to
but must be be 100% correct!
serializable!
BEGIN BEGIN
ISOLATION LEVEL serializable; ISOLATION LEVEL read committed;
UPDATE students SELECT avg(gpa)
SET gpa = 4.0 FROM students;
WHERE sid = 1234; END;
END;

88
oL

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
What could go wrong in Read Committed? ¥

* Non-repeatable reads o
O Suppose you read a tuple twice in your transaction ransactions
o Another transaction could run between the two reads and update it!

e Phantoms
O Suppose you run a query with a non-key WHERE clause
m E.g. “find all students with an A grade”
o If you run it again, some brand new tuples (phantoms) could appear!

* Staleness: Technically you could read a very old (but committed) “version”
o Still satisfies the definition!

89

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

s
Repeatable Read Isolation ks

* Prevents dirty reads and non-repeatable reads

#transactions

* A locking-based way to think about it:
o All locks are held until COMMIT/ROLLBACK
O But could be only tuple-level locks

e So phantoms are still possible!

90

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

Snapshot Isolation is not (quite) Serializable

#transactions

Set my salary to Set my salary to
be 10% bigger be 10% bigger
Pat (T)) than Gabi’s than Pat’s Gabi (T,)
I
P_: 200000 Time G, 100000
X = R1(Go)
y=R,(P,)

W,(P, = 110000)

W_(G, = 220000)

NOT equivalent to either order (not serializable!)

Write skew anomaly: concurrent reads, and writes reflect the fact that they didn’t read
each other’s writes! 91

00

https://app.sli.do/event/kLexAFiYTQdkGkF2P2DyWn

