UNIT 2
ANIMATIONS

Turn up the music!

YOU ARE HERE

WHAT'S INCLUDED

PERFORMING SCRIPTS
BUILD-A-BAND
ORANGE SQUARE, PURPLE CIRCLE
IT’S ALIVE!
DEBUG IT!
MUSIC VIDEO
UNIT 2
OVERVIEW

THE “BIG IDEA”

Kids have shared more than six million projects in the Scratch online community – animations, stories, games, and beyond – and one of our goals with the guide is to reflect this enormous diversity of creations. Within activities, we support opportunities to personalize and avoid presenting challenges that have only one “right” answer; across activities, we engage learners in a variety of genres. In this unit, we start to explore this creative diversity with a deep dive into animation, art, and music.

Creative diversity in Scratch has often been highlighted by learners. Here are a few quotes from learners who were asked, “If you had to explain what Scratch is to one of your friends, how would you describe it?”

Well, I like that you can sort of do anything on it. It’s like you can do whatever you want, really. You can be as creative as you want to be.
Aaron, 10 years old

It’s just that there’s endless possibilities. It’s not like you can just make this project or this project and that’s all that you can make.
Nevin, 9 years old

It’s a program that lets you explore your imagination. You can do whatever you want in it. You can create anything. There really is no limit to what you can make. You design your own stuff, and once you start you just don’t want to stop because as you learn more, you can see there’s more possibilities, and the more possibilities there are, the more you want to expand on what you just learned.
Bradley, 12 years old

It’s really great to express yourself creatively. You could do anything with it. You can make video games, music, art, videos, anything. The possibilities are endless, no limitations, really.
Lindsey, 12 years old

LEARNING OBJECTIVES

Students will:
+ be introduced to the computational thinking concepts of loops, events, and parallelism
+ become more familiar with the concepts of sequence
+ experiment with new blocks in the Events, Control, Sound, and Looks categories
+ explore various arts-themed Scratch programs
+ create an animated music video project

KEY WORDS, CONCEPTS, & PRACTICES

+ loops
+ events
+ parallelism
+ control
+ broadcast
+ scripts
+ presentation mode
+ bitmap
+ vector
+ animation
+ gallery walk

NOTES

Many activities in this unit include elements of sound and music. We recommend having headphones readily available for students.
Programming in Scratch is like directing theatre. In theatre, just as in Scratch, there are characters (sprites, in Scratch parlance), costumes, backdrops, scripts, and a stage. Scratch programming utilizes cues called “events”, which signal when things should occur in a project, such as: activating a project (when green flag clicked), triggering sprites’ actions (when this sprite clicked), or even sending a silent cue across sprites or backdrops (broadcast).

Inspired by the theatre metaphor, this unit’s arts-themed activities are designed to help students explore the computational concepts of loops, events, and parallelism, culminating in the design of personalized music videos.

Session 1: Performing Scripts
Play the part of a sprite by acting out different Scratch blocks and scripts.

Session 2: Build-a-Band
Create your own musical group by making interactive instruments.

Session 3: Orange Square, Purple Circle
What project can you create that includes an orange square and a purple circle?

Session 4: It’s Alive!
Can you animate it? Experiment with multiple costumes to bring an image to life.

Session 4 & Session 5: Debug It!
Help! Can you debug these five Scratch programs?

Session 5: Music Video
How can you combine animation with music to create your own Scratch-inspired music video?
PERFORMING SCRIPTS

ACTIVITY DESCRIPTION

- Optionally, have a projector connected to a computer with Scratch open to display which blocks and scripts will be performed.
- Ask for two volunteers.
- Prompt the two volunteers to act out a series of instructions (either by “programming” the volunteers through the Scratch interface or through printed-out physical versions of the Scratch blocks).
 - Have one person do one thing (like walk across the room).
 - Have that person “reset”.
 - Have that person do two things simultaneously (like walk across the room and talk).
 - Add the second person, by having the second person simultaneously (but independently) do a task, like talking.
 - Have the second person do a dependent task, like responding to the first person instead of talking over.
- Reflect on the experience as a group to discuss the concepts of events and parallelism using the reflection prompts to the right.

OBJECTIVES
By completing this activity, students will:
+ be introduced to the concepts of events (one thing causing another thing to happen) and parallelism (things happening at the same time) through performance
+ be able to explain what events are and how they work in Scratch
+ be able to explain what parallelism is and how it works in Scratch

RESOURCES

- projector (optional)
- physical Scratch blocks (optional)

REFLECTION PROMPTS

+ What are the different ways that actions were triggered?
+ What are the mechanisms for events in Scratch?
+ What were the different ways in which things were happening at the same time?
+ What are the mechanisms that enable parallelism in Scratch?

REVIEWING STUDENT WORK

+ Can students explain what events and parallelism are and how they work in Scratch?

NOTES

+ This activity highlights the notion of “reset”, which is something Scratchers often struggle with as they get started. If they want things to start in a particular location, with a particular look, etc., students need to understand that they are completely responsible for programming those setup steps.
+ This activity can be useful for demonstrating the broadcast and when I receive block pair.

NOTES TO SELF
What are the different ways that actions were triggered?

What are the mechanisms for events in Scratch?

What were the different ways in which things were happening at the same time?

What are the mechanisms that enable parallelism in Scratch?
Scratch's Central Theatrical Metaphor

Sprite

Stage

Costume
BUILD-A-BAND

ACTIVITY DESCRIPTION

❑ Optionally, show example projects from the Build-a-Band studio and have the Build-a-Band handout available to guide students.

❑ Give students time to create interactive instruments by pairing sprites with sounds. Encourage them to experiment with different ways to express sounds in Scratch by exploring other blocks in the Music category or using the editing tools within the Sounds tab.

❑ Allow students to demonstrate their bands to one another or let students walk around to interact with classmates’ instruments. We recommend a gallery walk: have students put their projects in presentation mode and then invite them to walk around and explore each other’s projects. Optionally, have students add their projects to the Build-a-Band studio or a class studio.

❑ Ask students to think back on the design process by responding to the reflection prompts in their design journals or in a group discussion.

OBJECTIVES
By completing this activity, students will:
+ create a program that combines interactive sprites with interesting sounds
+ develop greater fluency with sequence, loops, events, and parallelism
+ practice experimenting and iterating in building up project creations

RESOURCES
❑ Build-a-Band handout
❑ Build-a-Band studio
 http://scratch.mit.edu/studios/475523

REFLECTION PROMPTS
+ What did you do first?
+ What did you do next?
+ What did you do last?

REVIEWING STUDENT WORK
+ Do projects make creative use of sounds?
+ Are the sprites in the projects interactive?

NOTES
+ To share as a whole group, have students perform their Scratch instruments together to form a class band!

NOTES TO SELF
❑
❑
❑
❑
❑
BUILD-A-BAND

HOW CAN YOU UTILIZE SCRATCH TO CREATE SOUNDS, INSTRUMENTS, BANDS, OR STYLES OF MUSIC THAT REPRESENT THE MUSIC YOU LOVE MOST?

In this activity, you will build your own music-inspired Scratch project by pairing sprites with sounds to design interactive instruments.

START HERE

- Create a sprite.
- Find the music blocks by clicking into the Extensions menu.
- Select “Music blocks.”
- Add sound blocks.
- Experiment with ways to make your instruments interactive.

Touch interface:

when this sprite clicked

repeat 10

play drum (1) Snare Drum for 0.25 beats
rest for 0.25 beats

Choose instruments from the sprite library or create your own.

THINGS TO TRY

- Use repeat blocks to make a sound play more than once.
- Import or record your own sounds or experiment with the Sounds editor.
- Try playing with the tempo blocks to speed up or slow down the rhythm.

FINISHED?

- Add your project to the Build-A-Band Studio:
 http://scratch.mit.edu/studios/475523
- Challenge yourself to do more! Invent a new instrument or record your own sounds.
- Help a neighbor!
BUILD-A-BAND REFLECTIONS

RESPOND TO THE FOLLOWING REFLECTION PROMPTS USING THE SPACE PROVIDED BELOW OR IN YOUR DESIGN JOURNAL.

NAME:

+ What did you do first?

+ What did you do next?

+ What did you do last?
ACTIVITY DESCRIPTION

- Optionally, show example projects from the Orange Square, Purple Circle studio and have the Orange Square, Purple Circle handout available to guide students.
- Give students time to create a project that includes an orange square and a purple circle. Invite students to experiment with Looks blocks and the paint editor to explore their artistic abilities.
- Encourage students to share their creative work with others. We recommend gallery walk: have students put their projects in presentation mode and then invite them to walk around and explore each other’s projects. Optionally, have students add their projects to the Orange Square, Purple Circle studio or a class studio.
- Ask students to think back on the design process by responding to the reflection prompts in their design journals or in a group discussion.

OBJECTIVES
By completing this activity, students will:
+ express their creativity by completing an arts-themed challenge
+ gain more fluency with Looks blocks and the paint editor

RESOURCES

- Orange Square, Purple Circle handout
- Orange Square, Purple Circle studio
 http://scratch.mit.edu/studios/475527

REFLECTION PROMPTS

+ How did you incorporate an orange square and a purple circle into your project? Where did this idea come from?
+ What was challenging about this activity?
+ What was surprising about this activity?

REVIEWING STUDENT WORK

+ Do projects include an orange square and a purple circle?

NOTES

+ If students have questions, remind them that they can open the Tips Window to learn more about specific blocks or different parts of the Scratch editor.
+ Scratch supports both bitmap and vector graphics. Help students navigate to the vector mode or bitmap mode button in the paint editor to design and manipulate different types of images and text.

NOTES TO SELF

- ____________________________
- ____________________________
- ____________________________
- ____________________________
ORANGE SQUARE, PURPLE CIRCLE

WHAT PROJECT CAN YOU CREATE THAT INCLUDES AN ORANGE SQUARE AND A PURPLE CIRCLE?

In this challenge, you’ll create a project that includes an orange square and a purple circle. What will you create?

START HERE

- Draw your sprites using the Paint Editor.
- Add different Looks and Motion blocks to bring your sprites to life.
- Repeat!

FEELING STUCK?

THAT’S OKAY! TRY THESE THINGS...

- Try brainstorming with a neighbor!
- Create a list of things you would like to try before you start building your project in Scratch!
- Explore other projects to see what others are doing in Scratch – this can be a great way to find inspiration!

FINISHED?

- Add your project to the Orange Square, Purple Circle Studio: http://scratch.mit.edu/studios/475527
- Explore the difference between bitmap mode and vector mode, located at the bottom of the paint editor.
- Challenge yourself to do more! Add another shape or color.
- Swap projects with a partner and remix each other’s creations.
- Help a neighbor!
ORANGE SQUARE, PURPLE CIRCLE REFLECTIONS

+ How did you incorporate an orange square and a purple circle into your project? Where did this idea come from?

+ What was challenging about this activity?

+ What was surprising about this activity?
ACTIVITY DESCRIPTION

❑ Optionally, show example projects from the It’s Alive! studio and have the It’s Alive! handout available to guide students.

❑ Introduce the concept of an animation as looping through a series of incrementally different pictures, such as in a flipbook or a claymation film. Encourage students to explore loops by changing costumes or backdrops to create an animation.

❑ Invite students to share their work with others by hosting a gallery walk: have students put their projects in presentation mode and then invite them to walk around and explore each other’s projects. Optionally, have students add their projects to the It’s Alive studio or a class studio.

❑ Ask students to think back on the design process by responding to the reflection prompts in their design journals or in a group discussion.

OBJECTIVES
By completing this activity, students will:
+ become more familiar with the computational concepts of sequence and loops by experimenting with Control blocks
+ be able to explain the difference between sprites and costumes
+ practice experimenting and iterating through developing an animation project

RESOURCES

❑ It’s Alive! handout
❑ It’s Alive! studio
 http://scratch.mit.edu/studios/475529

REFLECTION PROMPTS

+ What is the difference between a sprite and a costume?
+ What is an animation?
+ List three ways you experience loops in real life (e.g., going to sleep every night).

REVIEWING STUDENT WORK

+ Can students distinguish sprites and costumes?
+ Some Scratchers are particularly interested in developing animation projects and prefer to spend their time drawing and designing sprites, costumes, or backdrops. How might you engage students in both the aesthetic and technical aspects of projects?

NOTES

+ The difference between sprites and costumes is often a source of confusion for Scratchers. The metaphor of actors wearing multiple costumes can help clarify the difference.
+ Students can animate their own image by taking pictures of themselves using a camera or webcam.
IT’S ALIVE!

HOW CAN YOU TAKE AN IMAGE OR A PHOTO AND MAKE IT COME ALIVE?

In this activity, you will explore ways of bringing sprites, images, and ideas to life as an animation by programming a series of costume changes.

START HERE

❑ Choose a sprite.
❑ Add a different costume.
❑ Add blocks to make the image come alive.
❑ Repeat!

THINGS TO TRY

❑ Try sketching your animation ideas on paper first – like a flipbook.
❑ Experiment with different blocks and costumes until you find something you enjoy.
❑ Need some inspiration? Find projects in the Animation section of the Explore page.

FINISHED?

+ Add your project to the It's Alive studio: http://scratch.mit.edu/studios/475529
+ Challenge yourself to do more! Add more features to your project to make your animations look even more lifelike.
+ Help a neighbor!
+ Share your project with a partner and walk them through your design process.
+ Find an animated project you’re inspired by and remix it!
IT’S ALIVE!

REFLECTIONS

+ What is the difference between a sprite and a costume?

+ What is an animation?

+ List three ways you experience loops in real life (e.g., going to sleep every night).
DEBUG IT!

OBJECTIVES
By completing this activity, students will:
+ investigate the problem and find a solution to five debugging challenges
+ explore a range of concepts (including sequence and loops) through the practices of testing and debugging
+ develop a list of strategies for debugging projects

ACTIVITY DESCRIPTION

- Optionally, have the Unit 2 Debug It! handout available to guide students during the activity.
- Help students open the Debug It! programs from the Unit 2 Debug It! studio or by following the project links listed on the Unit 2 Debug It! handout. Encourage students to click on the “Look Inside” button to investigate the buggy program, tinker with problematic code, and test possible solutions.
- Give students time to test and debug each Debug It! challenge. Optionally, have students use the remix function in Scratch to fix the bugs and save corrected programs.
- Ask students to reflect back on their testing and debugging experiences by responding to the reflection prompts in their design journals or in a group discussion.
- Create a class list of debugging strategies by collecting students’ problem finding and problem solving approaches.

RESOURCES

- Unit 2 Debug It! handout
- Unit 2 Debug It! studio
 http://scratch.mit.edu/studios/475539

REFLECTION PROMPTS

+ What was the problem?
+ How did you identify the problem?
+ How did you fix the problem?
+ Did others have alternative approaches to fixing the problem?

REVIEWING STUDENT WORK

+ Were students able to solve all five bugs? If not, how might you clarify the concepts expressed in the unsolved programs?
+ What different testing and debugging strategies did students employ?

NOTES

+ Facilitate this activity in a whole group by having students act out the Debug It! programs in a similar way to the Performing Scripts activity, or introduce performing scripts as a new strategy for testing and debugging projects.

NOTES TO SELF
HELP! CAN YOU DEBUG THESE FIVE SCRATCH PROGRAMS?

In this activity, you will investigate what is going awry and find a solution for each of the five Debug It! challenges.

START HERE

- Go to the Unit 2 Debug It! Studio: http://scratch.mit.edu/studios/475539
- Test and debug each of the five debugging challenges in the studio.
- Write down your solution or remix the buggy program with your solution.

FEELING STUCK?

THAT’S OKAY! TRY THESE THINGS...

- Make a list of possible bugs in the program.
- Keep track of your work! This can be a useful reminder of what you have already tried and point you toward what to try next.
- Share and compare your problem finding and problem solving approaches with a neighbor until you find something that works for you!

FINISHED?

- Add code commentary by right clicking on blocks in your scripts. This can help others understand different parts of your program!
- Discuss your testing and debugging practices with a partner – make notes of the similarities and differences in your strategies.
- Help a neighbor!
DEBUG IT!

REFLECTIONS

+ What was the problem?

+ How did you identify the problem?

+ How did you fix the problem?

+ Did others have alternative approaches to fixing the problem?
MUSIC VIDEO

OBJECTIVES
By completing this activity, students will:
+ be able to create a project that combines animation and music by working on a self-directed music video project
+ gain more familiarity with sprites, costumes, and sounds

RESOURCES
- Music Video handout
- Music Video studio
 http://scratch.mit.edu/studios/475517

REFLECTION PROMPTS
- What was a challenge you overcame? How did you overcome it?
- What is something you still want to figure out?
- How did you give credit for ideas, music, or code that you borrowed to use in your project?

REVIEWING STUDENT WORK
- Did the projects combine sprites and sound?
- What parts of the projects did students choose to animate?
- Are there certain blocks or concepts introduced up until now that students might still be struggling with? How might you help?

NOTES
- To further personalize projects, help students include a favorite song or record themselves singing or playing an instrument, using features under the Sounds tab.
- Questions about remixing and plagiarism may arise during this activity. Take this opportunity to facilitate a discussion about giving credit and attribution using the Scratch FAQ about remixing: https://scratch.mit.edu/info/faq#remix/

NOTES TO SELF
- ______________________________________
- ______________________________________
- ______________________________________
- ______________________________________
In this project, you will explore ideas related to theatre, song, dance, music, drawing, illustration, photography, and animation to create a personalized music video!

START HERE

- Add sound.
- Create and animate a sprite.
- Make them interact together!

THINGS TO TRY

- Use costumes to help bring your animations to life!
- Make your sprite interactive by adding scripts that have the sprite respond to clicks, key presses, and more.
- Add instructions on the project page to explain how people can interact with your program.

FINISHED?

+ Add your project to the Music Video studio:
 http://scratch.mit.edu/studios/475517
+ Be sure to give credit to any music, code, or other work used in your project.
+ Challenge yourself to do more! Create your own sprites, sounds, or costumes!
MUSIC VIDEO REFLECTIONS

RESPOND TO THE FOLLOWING REFLECTION PROMPTS USING THE SPACE PROVIDED BELOW OR IN YOUR DESIGN JOURNAL.

NAME:

+ What was a challenge you overcame? How did you overcome it?

+ What is something you still want to figure out?

+ How did you give credit for ideas, music, or code that you borrowed to use in your project?