
Concurrency in Chromium:

cfredric@

How I learned to stop worrying and love
Sequences

Goals

● Give intuition on Chromium's concurrency model

● Show some useful tips/tricks for working with concurrency in Chromium

Non-goals:

● Explain how things are implemented, in depth

● Show all APIs related to concurrency

Agenda

● What's the problem?

● Chromium's solution
○ Vocabulary

○ Guts

○ Usage patterns

Chromium's Architecture

● Chromium consists of multiple processes:
○ Browser process, renderer processes, utility processes (network process, data decoder process, etc.)

● Each process consists of multiple threads:
○ Main thread (also called UI thread in browser process)

○ IO thread (for IPC, not file/network IO)

○ Other special purpose threads

○ A pool of general-purpose threads

Intra-process Parallelism (in general)

All threads of a given process share the same address space (modulo thread-local storage [TLS]).

How can threads avoid data races, in general?

Multiple approaches:

● Access memory from multiple threads simultaneously
○ "Communicate by sharing memory"
○ Must use mutexes, condvars, etc. to ensure safety

● Send data between threads, without sharing memory
○ "Share memory by communicating"
○ Must use message-passing between threads

● Hybrid

Intra-process Parallelism in Chromium

Chromium uses the hybrid approach, with a strong preference for message-passing:

● Send data and tasks between threads, instead of using locks to synchronize.

● Locks/condition variables exist, but are rarely needed.

The End

The End

Why not stop here?

● Threads are too coarse-grained & heavy-weight

● Chromium has many independent streams of work to do at a given time
○ Need a way to take independent streams of work and load-balance them between threads

Chromium's concurrency vocabulary

● Task: a basic unit of work.
○ Think OnceCallback and RepeatingCallback.

● Physical thread: an OS thread.
○ Think pthreads on POSIX.

● base::Thread: Chromium's abstraction over physical threads.
○ Platform-agnostic.

● Sequence: a "virtual thread"; a "stream of work".
○ An environment that executes a series of tasks in order.

○ Not associated with any particular physical thread.

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/threading_and_tasks.md#Threading-Lexicon

How does Chromium execute Sequences?

● ❌ One thread : one Sequence
○ Idea: make a new thread to handle each Sequence

○ Too much overhead

● ❌ One thread : many Sequences
○ Idea: each thread owns a set of Sequences that it executes

○ Hard to load-balance

● ✅ Many threads : many Sequences
○ Idea: threads share Sequences, pick one to execute when scheduling the next task

○ Can "move" a Sequence from a busy thread to an idle one => easy to load-balance

○ Doesn't require large number of threads (good for low-end devices)

Why are we here, again?

● Started by discussing safe concurrent programming

● Got sidetracked about efficient concurrent programming
○ ignored how to make it safe, oops

How to use Sequences safely?

● Goal: use the properties of Sequences to protect against data races
○ Know: data races occur if data is accessed by more than one thread at a time

○ Know: tasks from a given Sequence can execute on only one thread at a time

● => If all the code that accesses an object is on the same Sequence, it's impossible to have a data

race involving that object

● => Want something to ensure that whenever we access an object, we do so from a consistent

Sequence
○ SEQUENCE_CHECKER is built for this!

○ GUARDED_BY_CONTEXT makes it impossible to forget to do this check (fails at compile-time).

○ More flexible than ThreadChecker, since it doesn't care what physical thread it's on.

Sequences, visualized

UI Task

History::GetHistory...Worker

TaskTask

Worker

Task

History::GetHistory...

Image credit: Life of a Process, Chrome U 2019

Sequence internals

A class that is:

● A TaskSource
○ Provides stream of tasks to threading infrastructure.

And has:

● A SequenceToken
○ Wrapper around an int.
○ Each instance gets a unique token.

● A SequenceLocalStorageMap
○ Like thread-local storage, but for Sequences

How does the infra use Sequences?

● Scheduler ensures that a Sequence only executes one task at a time.

● Before a Sequence's next Task is executed, its SequenceToken and SequenceLocalStorage are

put into TLS.
○ => each thread has a unique "currently running Sequence"

Who creates Sequences?

● Sequences are integrated in ThreadPool/TaskRunner infrastructure

● Sequences get automatically created by:
○ base::ThreadPool::Post[Delayed]Task

○ base::Create[Updateable]SequencedTaskRunner

○ base::CreateSingleThreadTaskRunner

How do I send a task from my Sequence to another?

● I don't care what Sequence I use:
○ ThreadPool::Post[Delayed]Task (creates a new Sequence)

● To a specific sequence:
○ SequencedTaskRunner::Post[Delayed]Task

○ SingleThreadTaskRunner::Post[Delayed]Task

● SequenceBound<T> can help call methods/ctor/dtor on a specific sequence.

How do I run tasks on "my" Sequence?

● Run a task on some other sequence, then come back:
○ TaskRunner::PostTaskAndReply[WithResult]

○ ThreadPool::PostTaskAndReply[WithResult]

● Run something on "my" sequence, asynchronously:
○ SequencedTaskRunnerHandle::Get()->Post[Delayed]Task

I don't know what Sequence I need to run on!

● You might not have to do anything!
○ Often APIs implicitly use sequences properly.

○ E.g. mojo::Receiver::Bind by default schedules message events on the sequence that called Bind.

References

● Threading and Tasks in Chrome

● Threading and Tasks FAQ

● Share Memory By Communicating - The Go Programming Language

● The Chromium Chronicle #1: Task Scheduling Best Practices

● Chrome U 2019: Life of a Process (slides)

● Callbacks in Chromium

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/threading_and_tasks.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/threading_and_tasks_faq.md
https://go.dev/blog/codelab-share
https://developer.chrome.com/blog/chromium-chronicle-1/
http://slides/1OKro_EFkob_sIusmQ6fv-PtCBEHk7YaQWL7tysMNvOQ#slide=id.g5f38893b6d_2_400
https://chromium.googlesource.com/chromium/src/+/main/docs/callback.md

Appendix

● Jobs (post_job.h)
○ Power-user API, for bulk-processing with minimal scheduling overhead

https://source.chromium.org/chromium/chromium/src/+/main:base/task/post_job.h?q=post_job.h

