
> git --rewrite --the --history
> Author: Joan Jané
> Date: 19/10/2017

 ((((((((
 ((((

 ## ### ((
(((((

######## ## ######## ### ### ### ###### ####### ## ### ###### ###### ######## ### #######

>> DANGER ZONE <<

If you don’t know what are you doing, keep your hands off the

console :P

Changing the history of a repo should be only applied on

private commits, and never to public commits. This operations

create a new timeline that doesn’t share the same common

ancestors.

This means THEY ARE NEW COMMITS and will create conflicts with

existing remotes.

> BE ADVISED, PRESS KEY TO CONTINUE...

#

#

#

#

#

#

#

#

Oh no! I’ve just committed a wrong message

Ok, don’t worry, this is an easy one, git amend combines staged

changes with the previous commit and also allows edit the

commit message.

> git commit --amend

This creates a new commit in your history, replacing the

previous one.

But what if I want to change the message of a commit that is

not the last one?

#

#

#

#

#

#

#

Rebase interactive

Rebase interactive command lets you apply this operations to a

range of commits:

* squash (melt a commit with previous)
* reword (change log message)
* edit (use commit and stop for amending)
* pick (use commit)
* fixup (squash but with new log message)
* exec (run command)
* drop (remove commit)
* reorder commits (crazy)

#

#

#

#

#

#

#

#

Squash, WHY?

When working on a feature branch, you may create a large amount

of tiny commits (baby steps).

On many projects, especially on big Open Source Projects, it is

common that feature branches integrate to master squashing

commits into a single commit or few commits.

#

#

#

#

#

Rebase interactive

Example of changing the last 3 commits:

> git rebase -i HEAD~3

Perform operations and continue process until finishes:

> git rebase --continue

And remember, you can abort and start again:

> git rebase --abort

Deleting a commit of git history

Sometimes, you would like to delete a concrete commit that you

regret to have done. You can do it knowing its commit id:

replace SHA with commit id like git rebase -p --onto abcde12^ abcde12

> git rebase -p --onto SHA^ SHA

#

#

Ups, I’ve committed on a wrong branch :P

Commit in a wrong branch is something that happens easily, when

this is the case, you can cherry-pick a commit and copy it to a

desired branch.

checkout the target branch you want to have the commit

> git cherry-pick <sha1-commit-id>

#

#

#

Force clean of orphaned commits

When applying changes on git history, git still stores them on

file system. Git Garbage Collector is suposed to run clean tasks

periodically, but if you wish to force clean unreachable commits

that don't have any branch associated, you can do it so:

> git reflog expire --expire-unreachable=now --all

> git gc --prune=now

#

#

#

#

Merge vs. Rebase

Rebase puts your commits on your branch on top of the incoming rebase branch,

rewriting the history.

Merge creates a new commit with incomming changes on history.

When to use merge:

* You are working on a public branch

* You may have outdated branch with many conflicts

When to use rebase:

* Otherwise and when you like a clean history

* You are not afraid of conflicts

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Merge vs. Rebase
Merge: Rebase:

master

feature

master

feature

Merge vs. Rebase

Merge:

> git checkout feature # your branch

> git merge master # incoming branch

Rebase:

> git checkout feature # your branch

> git rebase master # incoming branch

If your branch is public, BAD BOY, now you have to push forced.

> git push --force

Challenge 1

* Clone repo https://github.com/joanjane/git-challenge.git

* Open settings.txt file to see that there’s no relevant

content.

* 2nd commit contains a password, after an security audit, we

need to make it disappear from history for security reasons.

Challenge 1 - One solution

> git rebase -p --onto HEAD~2^ HEAD~2

> git rebase --continue

Challenge 2

* Checkout “test” branch on the same repo

* This branch contains 3 commits that we need to melt together

in order to integrate to master.

Challenge 2 - Solution

> git rebase -i HEAD~3

And then, choose commits to squash:

pick ******* Added 10mb file

squash ******* Update settings

squash ******* Updated 10mb file

More info / handy links

* https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

* https://www.atlassian.com/git/tutorials/rewriting-history

* https://www.atlassian.com/git/tutorials/merging-vs-rebasing

* https://gist.github.com/davfre/8313299

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://gist.github.com/davfre/8313299

