Welcome to Day 2 of
Introduction to Machine Learning Workshops
We’ll start at 1:00 PM as planned
Plan for the day …
Day 2 | | |
Activity | Start | End |
Zoom room opens | 12:45 PM | 1:00 PM |
What did we learn on Tuesday? | 1:00 PM | 1:20 PM |
Lecture | 1:20 PM | 1:55 PM |
First break | 1:55 PM | 2:10 PM |
Lecture | 2:10 PM | 2:55 PM |
Second break | 2:55 PM | 3:10 PM |
Lecture | 3:10 PM | 3:55 PM |
Conclusion | 3:55 PM | 4:00 PM |
What did we learn on Tuesday?
A quick review
For course material, see https://sites.google.com/view/aiandmlsummer2025/home
What is (Human) Intelligence?
https://www.merriam-webster.com/dictionary/intelligence
Run/Execute
Read/Edit
Three types of learning …
https://images.app.goo.gl/yaUmFoAmHcfeNA798
Supervised Learning
Unsupervised Learning
https://images.app.goo.gl/PkESdNzEMQxznFcg9
Reinforcement Learning
https://images.app.goo.gl/s9EBB19XLMcwL4t36
Three (common) types of learning …
8
Supervised | Regression | x1 | x2 | x3 | x4 | Y |
| | 12.42 | 7.03 | 13.15 | 1.65 | 13.17 |
| | 9.65 | 7.80 | 13.90 | 1.14 | 7.39 |
| | 3.89 | 11.81 | 4.01 | 4.52 | 10.40 |
Supervised | Classification | 10.37 | 1.48 | 12.10 | 5.88 | A |
| | 3.96 | 6.18 | 11.39 | 14.97 | B |
| | 5.01 | 2.35 | 10.67 | 4.90 | B |
| | 2.59 | 0.05 | 5.13 | 1.38 | A |
Unsupervised | Clustering | 12.11 | 5.03 | 7.84 | 13.56 | |
| | 4.96 | 13.61 | 1.40 | 7.95 | |
| | 4.81 | 14.46 | 4.92 | 11.18 | |
| | 9.20 | 7.98 | 4.71 | 0.20 | |
Simple Regression
https://colab.research.google.com/drive/1FAp1Dhf1Yf9NueOfGCSgEXc3SP6kWJP7?usp=sharing
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(df[['x']], df['y'])
y_pred = reg.predict(df[['x']])
Classification (We used Logistic Regression which is, ironically, NOT Regression but Classification!)
Iris Flower (three types or classes)
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
Classification of Digits
For example, 0 is
[ 0. 0. 12. 9. 12. 1. 0. 0. 0. 0. 14. 16. 16. 8. 0. 0. 0. 3. 16. 9. 3. 15. 2. 0. 0. 4. 16. 1. 0. 16. 5. 0. 0. 5. 12. 0. 0. 16. 5. 0. 0. 3. 14. 1. 4. 16. 4. 0. 0. 0. 15. 12. 14. 14. 0. 0. 0. 0. 7. 12. 12. 2. 0. 0.]
Sample # | X1 | X2 | X3 | … | … | X63 | X64 | y |
1 | 95 | 69 | 36 | … | … | 96 | 59 | 7 |
2 | 81 | 69 | 64 | … | … | 44 | 55 | 3 |
3 | 97 | 11 | 2 | … | … | 56 | 27 | 9 |
4 | 27 | 4 | 70 | … | … | 70 | 84 | 4 |
5 | 12 | 13 | 31 | … | … | 53 | 16 | 4 |
6 | 61 | 39 | 84 | … | … | 95 | 51 | 9 |
7 | 53 | 59 | 52 | … | … | 81 | 47 | 3 |
8 | 62 | 68 | 8 | … | … | 87 | 63 | 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 | 98 | 52 | … | … | 73 | 8 | 6 |
| 39 | 78 | 72 | … | … | 82 | 90 | 7 |
| 39 | 2 | 18 | … | … | 47 | 95 | 3 |
| 67 | 82 | 89 | … | … | 78 | 14 | 1 |
| 46 | 55 | 34 | … | … | 53 | 1 | 1 |
1797 | 96 | 62 | 65 | … | … | 57 | 92 | 8 |
from sklearn.linear_model import Perceptron
Model = Perceptron(tol=1e-3, random_state=60)
Model.fit(X,y)
And what did we miss?
MPS in Data Science at UMBC Shady Grove
https://professionalprograms.umbc.edu/data-science/masters-of-professional-studies-data-science/
Contact: M. A. Yousuf, maliyou1@umbc.edu
Academic Programs: MPS
��Master of Professional Studies:
Data Science
10 courses
30 credits
Who am I?
I have extensive consulting experience in medical devices and AI in healthcare, and teaching experience in parallel computing, AI, robotics and intelligent manufacturing.
I hold
Before coming to UMBC as the Graduate Program Director at Shady Grove:
https://quotefancy.com/quote/37364/Ellen-Johnson-Sirleaf-If-your-dreams-do-not-scare-you-they-are-not-big-enough