
Tessellated
 GPU Path Rendering

Stephen White, GPU-MON



What’s a path?

● path: unordered set of contours
● contour: ordered set of segments
● segment: line, quadratic, cubic, conic
● may have holes, may be self-intersecting
● winding rule to specify how holes are filled
● Web: SVG, <canvas>, rounded rect, fonts



Why do we even need to do this?

● GPUs render very fast, but only triangles
● must convert from path to triangles



Several approaches

● rasterize in software, upload to texture
● stencil-and-cover
● distance fields
● tessellation
● Loop-Blinn (plus tessellation)

● rasterize in software, upload to texture
● stencil-and-cover
● distance fields
● tessellation
● Loop-Blinn (plus tessellation)



How to handle curved segments?

● linearize them (subdivision)
● contours now piecewise-linear
● use screenspace threshold
● problem now: tessellate arbitrary 

polygonal contours into triangles



● Monotone
○ monotonically incr; all pts one side, concave

● Convex
○ all angles <= 180°

Animals in the polygon zoo

● Complex
○ self-intersections, holes

● Simple 
○ no self-intersections, no holes, concave



Convex polygons

First approach: fan



Convex polygons

Second approach: Alternate sides



● Simple 
○ no self-intersections, no holes, concave

● Convex
○ all angles <= 180°

Animals in the polygon zoo

● Complex
○ self-intersections, holes

● Monotone
○ monotonically incr; all pts one side, concave

✓



Concave: doesn’t work

ruh roh



“If at first you don’t succeed ... try something easier.”
- Alfred E. Neumann

Concave: doesn’t work
“If at first you don’t succeed ...



Monotone polygon

All points lie to 
one side of the 
minY->maxY line

Points are 
monotonically 
increasing in 
Y

1

2

3

4
5

6
7



Triangulate monotones: ear clipping
1) find the first convex 

vertex (O(n))
2) clip its ear (O(1))

3) find convex
neighbour
4) clip its ear

5) repeat

backtrack at most 
one step => O(n)



● Monotone
○ monotonically incr; all pts one side, concave

● Convex
○ all angles <= 180°

Animals in the polygon zoo

● Complex
○ self-intersections, holes

● Simple 
○ no self-intersections, no holes, concave

✓
✓



Sweep Line Algorithms

● Sort vertices in Y (O(N lg N))
● Sweep line passes from top to bottom
● Active Edge List: top vertex seen, bottom not
● Two vertices on the same sweep line?

○ WLOG: rotate slightly in Z
● y1 == y2 => Secondary compare in X
● “enclosing edges” of a vertex



Active edge list: example



● Which monotone lies left/right of each edge?

Lil’ bit harder now: simple polygon
● Obviously, not monotonic

● I say, forget about the trapezoids!

● Trapezoidal decomposition: 
turn simple into monotones



Lil’ bit harder now: simple polygon

Categorize verts in the zoo
All degree 2, so three species:

type 1:
one edge above,
one edge below

type 2:
both edges below

type 3:
both edges above



Lil’ bit harder now: simple polygon
● vertex types

2 (b/b)
1 (a/b)

1

1
1

1

1

3 (a/a)



Lil’ bit harder now: simple polygon
● Sort vertices in Y 

(secondarily in X)
● Each edge stores left 

mono, right mono



Simple to monotone: da rules
● type 1: 

○ AEL: remove incoming, insert outgoing
● type 2:

○ AEL: find enclosing edges (if any), and 
insert new edges in between

● type 3:
○ AEL: remove incoming edges

type 1

type 2

type 3



Simple to monotone: da rules
● type 1: 

○ copy L/R monotones from incoming
● type 2:

○ copy enclosing monotone (if any) to 
exterior edges

○ open new monotone below
● type 3:

○ close monotone above

type 1

type 2

type 3



Simple to monotone: da rules

● if incoming edge has left monotone
○ add current vertex to monotone’s RHS

● if incoming edge has right monotone,
○ add current vertex to monotone’s LHS

● if added on opposite side to handedness:
○ close monotone & start a new one
○ use previous & current vertex as the first two verts



Simple to monotone: example
type 2: start a new poly

type 1: add vertex to LHS
(poly is now left-handed)

type 1: add vertex to LHS

type 1: add vertex to LHS

type 1: add vertex to RHS

type 1: add vertex to RHS

type 3: close poly

now we have two monotones: triangulate ‘em

Fine print: left-handed monotones are triangulated bottom-up (simplifies code)

● type 1: add vertex to RHS
● opposite handedness: close monotone
● open new poly (right-handed)



● Monotone
○ monotonically incr; all pts one side, concave

● Convex
○ all angles <= 180°

Animals in the polygon zoo

● Complex
○ self-intersections, holes

● Simple 
○ no self-intersections, no holes, concave ✓

✓
✓



● Island: a lone type-2 enclosed 
inside a larger poly (e.g., hole)

● Peninsula: type-3 that joins two 
previously-unrelated polys

What about islands / peninsulas?

island

peninsula



Moar rules: splitting and merging

type 2

type 3

● Island: 
○ if monotone above, split into two monotones

● Peninsula
○ merge left & right shapes via partnership
○ partnership ends at subsequent vertex
○ instead of starting a new monotone, add 

vertex to partner monotone



Splitting and merging: example
type 2: start a new poly type 2: start a new poly

type 3: partner polys

type 1: add vertex to LHS => close,
add vertex to partner’s LHS (merge) type 1: add vertex to RHS => close,

start new poly
type 2: split poly 

type 3: close type 3: close

triangulate monotones



Intersections

Seems O(N^2) in edges?
Bentley-Ottman (sweep line):
● key observation: all intersecting 

edges are neighbours in AEL
● check for intersections:

○ type 1 & 2: outgoing vs. enclosing edges
○ type 3: left enclosing vs right enclosing
○ O((N + k) lg N) for k intersections

type 1

type 2

type 3



Intersections, cont’d

● insert new vertex at intersection point
○ always below sweep line

● split edges
● check for coincident vertices; merge



Intersections

The vertex zoo just got bigger...



Vertex zoo, generalized

● N edges above, M edges below
● For AEL:

○ N == 0 ⇒ type 2
○ M == 0 ⇒ type 3
○ else ⇒ type 1

N

M

...

...



Vertex zoo, generalized

● When N > 2, close multiple polys above
● When M > 2, open multiple polys below
● poly membership is copied along 

leftmost & rightmost edges

N

M

...

...



● Monotone
○ monotonically incr; all pts one side, concave

● Convex
○ all angles <= 180°

Animals in the polygon zoo

● Complex
○ self-intersections, holes

● Simple 
○ no self-intersections, no holes, concave

✓

✓
✓
✓



Pretty easy so far

● Nice computational geometry algorithms
● Fairly easy to implement
● O(N lg N)



Excrement, meet rotary ventillator

(fun with floating point)
● Bentley-Ottman requires exact math
● intersection is 5th order polynomial
● 24 bits mantissa => 160 bits :(



Two schools:
● These algorithms don’t work; give up
● Use arbitrary precision arithmetic

Float sucks: what do we do?



Float sucks: what do we do?

Drop out of school:
● assume intersections are random; 

adjust mesh geometry to match
● inaccuracies are in ULPs, not pixels



Excrement, meet rotary ventillator

Intersections can:
● change outgoing edge order within vertices

○ solution: intersection => check & reorder top vertex
● change edge order in active edge list

○ solution: intersection => check & reorder 
w/neighbours in AEL



Excrement, meet rotary oscillator

Merging coincident vertices can:
● add edge above type 2 => type 1
● remove last edge above type 1 => type 2
● both can change enclosing edges and polys
Solution: on type change,
● redo find enclosing edges
● restart intersection checks



Future work

● shipping in M44, Android, MSAA
● caching (threshold scale), shipping in M46
● enable in <canvas>
● alpha ramp AA (no MSAA required)

○ Desktop: Intel MSAA perf is terrible
○ 1-pixel-wide alpha ramp around geometry
○ batching



References
● Fournier & Montuno, "Triangulating Simple 

Polygons and Equivalent Problems"
● Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for 

reporting and counting geometric intersections"
● Jean-Daniel Boissonnat and Franco P. Preparata. 

Robust plane sweep for intersecting segments. 
SIAM Journal on Computing, 29:1401-1421, 2000.

http://dl.acm.org/citation.cfm?id=357341
http://dl.acm.org/citation.cfm?id=357341
https://en.wikipedia.org/wiki/Jon_Bentley
http://www.itseng.org/research/papers/topics/VLSI_Physical_Design_Automation/Physical_Verification/DRC/Geometric_Intersection_Problems/1979-Bentley.pdf
http://www.itseng.org/research/papers/topics/VLSI_Physical_Design_Automation/Physical_Verification/DRC/Geometric_Intersection_Problems/1979-Bentley.pdf


Questions?



Performance results

https://docs.google.com/spreadsheets/d/1S1hIb
5hHCG04fP-9XeFgc73Zo07N8HIa5lYC07ju-G
w/edit#gid=0
https://docs.google.com/spreadsheets/d/1mMU
39qbUt7LmQRUngqRJ0oL6sE7zwI8nElx3j__b
nek/edit#gid=0

https://docs.google.com/spreadsheets/d/1S1hIb5hHCG04fP-9XeFgc73Zo07N8HIa5lYC07ju-Gw/edit#gid=0
https://docs.google.com/spreadsheets/d/1S1hIb5hHCG04fP-9XeFgc73Zo07N8HIa5lYC07ju-Gw/edit#gid=0
https://docs.google.com/spreadsheets/d/1S1hIb5hHCG04fP-9XeFgc73Zo07N8HIa5lYC07ju-Gw/edit#gid=0
https://docs.google.com/spreadsheets/d/1mMU39qbUt7LmQRUngqRJ0oL6sE7zwI8nElx3j__bnek/edit#gid=0
https://docs.google.com/spreadsheets/d/1mMU39qbUt7LmQRUngqRJ0oL6sE7zwI8nElx3j__bnek/edit#gid=0
https://docs.google.com/spreadsheets/d/1mMU39qbUt7LmQRUngqRJ0oL6sE7zwI8nElx3j__bnek/edit#gid=0

