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Zoom etiquettes

We appreciate it
if you keep videos on!

More visual feedback for us

to adjust materials

Better learning environment
Better sense of who you’re with
in class!

WAITING FOR STUDENTS TO TURN 'IIIE(!S ON 80
I DON'T FEEL LIKE I'M TALKING 'I'll AN EMPTY IIOIIH 3




Agenda

Natural labels & feedback loops
Causes of ML failures

Breakout exercise

Data distribution shifts
Monitoring & observability
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Lecture note is on course website / syllabus



Natural labels &
feedback loops



Natural labels

e The model’s predictions can be automatically evaluated or partially
evaluated by the system.

e Examples:

o ETA
Ride demand prediction
Stock price prediction
Ads CTR
Recommender system

O O O O



Natural labels

® You can engineer a task to have natural labels

VIETNAMESE - DETECTED ENGLISH SPANISH FRENCH v Pl ENGLISH SPANISH ARABIC v
Mua xuén vé, cé xanh mon mén X Spring comes, the grass is green b
L D) 28/ 5,000 ) rD [bq <

Rate this translation



Natural labels: surprisingly common

How companies obtain labels (n = 72)

59.7%

N s.0% )\ Biases /\
m- e Small sample size
- e Companies might only
use ML for tasks with
"0 natural labels

Hand labels Natural labels Programmatic labels

Claypot Al's real-time ML survey (2022)



https://forms.gle/TxHm36cJNNzR8kWX8

Delayed labels

Prediction

is served
|

Feedback

is provided
|

AN

J

Y

Feedback
loop length

Time



Delayed labels

Prediction Feedback

is served is provided
| |
I |

J

Y

Time
Feedback
loop length

e Short feedback loop: minutes -> hours
o Reddit/ Twitter / TikTok’s recommender systems

e Long feedback loop: weeks -> months

o  Stitch Fix’'s recommender systems
o  Fraud detection



Feedback loop length (n = 51)

minutes

weeks/months

Perfectly/balanced...

hours

\

2

...As all things should be

days

10
Claypot Al's real-time ML survey (2022)



https://forms.gle/TxHm36cJNNzR8kWX8

Labels are often assumed

Recommendation:

o Click -> good rec
o  After X minutes, no click -> bad rec

%—/
Too shor/ \TOO long

False Slow
negatives feedback

Speed vs. accuracy
tradeoff

11



I\ Labels are often assumed 1\

e Recommendation:

o After X minutes, no click -> bad rec
%—J

250000 A

Too L g

oo lon ©
Too short 9 S OB

k]
False Slow é 150000 -

. 2
negatives feedback Z 00000 4
50000 -
0 -

0 50 100 150 200 250 300
Time-to-click since impression (in mins)

12
Addressing Delayed Feedback for Continuous Training with Neural Networks in CTR prediction (Ktena et al., 2019)



https://arxiv.org/abs/1907.06558

Causes of ML failures



Amazon scraps secret Al recruiting tool that
showed bias against women

That is because Amazon’s computer models were trained to vet applicants by
observing patterns in resumes submitted to the company over a 10-year period.

Most came from men, a reflection of male dominance across the tech industry.

In effect, Amazon’s system taught itself that male candidates were preferable. It
penalized resumes that included the word “women’s,” as in “women’s chess club
captain.” And it downgraded graduates of two all-women’s colleges, according to

people familiar with the matter. They did not specify the names of the schools.

14

Amazon scraps secret Al recruiting tool that showed bias against women (Reuters, 2018)



https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

“Guests complained their robot —_
room assistants thought snoring |
sounds were commands and

would wake them up
repeatedly during the night.”

https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce



https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce

What is an ML failure?

A failure happens when one or more expectations of the system is violated.
Two types of expectations:

e Operational metrics: e.g. average latency, throughput, uptime
e ML metrics: e.g. accuracy, F1, BLEU score

16



What is an ML failure?

A failure happens when one or more expectations of the system is violated

e Traditional software: mostly operational metrics

e ML systems: operational + ML metrics

o  Ops: returns an English translation within 100ms latency on average
o ML: BLEU score of 55 (out of 100)

17



ML system failures

e |f you enter a sentence and get no translation back -> ops failure
e |[f one translation is incorrect -> ML failure?

18



ML system failures

e |f you enter a sentence and get no translation back -> ops failure
e |[f one translation is incorrect -> ML failure?

e Not necessarily: expected BLEU score < 100
e ML failure if translations are consistently incorrect

19



Ops failures ML failures

Visible Often invisible
e 404, timeout, segfault, OOM, etc.

:
Bernie
Bernie

2016

404 - PAGE NOT FOUND

A special message from Bernie

404 - PAGE NOT FOUND  Eernie

@ & wid 5] T

20



Causes of ops failures (software system failures)

Dependency failures

Deployment failures

Hardware failures

Network failure: downtime / crash

21



Causes of ops failures (software system failures)

Dependency failures

Deployment failures

Hardware failures

Network failure: downtime / crash

60 / 96 ML systems failures are non-ML failures

(Papasian & Underwood, 2020)

Q

As tooling & best practices around ML production mature,
there will be less surface for software failures

22


https://www.youtube.com/watch?v=hBMHohkRgAA

ML-specific failures (during/post deployment)

1. Production data differing from training data
2. Edge cases
3. Degenerate feedback loops

We've already covered problems
pre-deployment in previous lectures!
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Production data differing from training data

e Train-serving skew:
o Model performing well during development but poorly after production

e Data distribution shifts

o Model performing well when first deployed, but poorly over time
o I\ What looks like data shifts might be caused by human errors /1

24



Production data differing from training data

e Train-serving skew:
o Model performing well during development but poorly after production

e Data distribution shifts

o Model performing well when first deployed, but poorly over time
o I\ What looks like data shifts might be caused by human errors /1

Common & crucial.
Will go into detail!

25



Edge cases

e Self-driving car (yearly)

o Safely: 99.99%
o Fatal accidents: 0.01%

Zoom poll: Would you
use this car?

26



Edge case vs. outlier

Outliers

o Refer to inputs

o Options to ignore/remove
Edge cases

o Refer to outputs
o Can’tignore/remove

de_c}s}on l—;oundary

outlier

decision Boumdart/

27



Degenerate feedback loops

e \When predictions influence the feedback, which is then used to extract
labels to train the next iteration of the model
e Common in tasks with natural labels

Predictions

Users’
feedback

Training data

28



Degenerate feedback loops: recsys

e Originally, A is ranked marginally higher than B -> model recommends A
e After a while, A is ranked much higher than B

Model
recommends
item A

User clicks
on A

Model confirms
A is good

29



Degenerate feedback loops: recsys

e Originally, A is ranked marginally higher than B -> model recommends A
e After a while, A is ranked much higher than B

Model
recommends
item A

Model confirms
A is good

User clicks
on A

Over time,
recommendations
become more
homogenous

30



Degenerate feedback loops: resume screening

Originally, model thinks X is a good feature

Model only picks resumes with X

Hiring managers only see resumes with X, so only people with X are hired
Model confirms that X is good

|

Replace X with:

e Has a name thatis typically used for males
e Went to Stanford
e \Worked at Google

31



Degenerate feedback loops: resume screening

Originally, model thinks X is a good feature

Model only picks resumes with X

Hiring managers only see resumes with X, so only people with X are hired
Model confirms that X is good

|

Tracking feature importance might help!

32



Detecting degenerate feedback loops

Only arise once models are in production -> hard to detect during training

Predictions

Users’
feedback

Training data

33



Degenerate feedback loops:

e Average Rec Popularity (ARP) 035
o Average popularity of the
recommended items

e Average Percentage of Long Tail 025
ltems (APLT)

o average % of long tail items being
recommended

e Hit rate against popularity
o Accuracy based on recommended
items’ popularity buckets

0.30

HIT Rate
o
N
o

o
et
(3]

o
-
o

0.05

0.00

Beyond NDCG: behavioral testing of recommender systems with ReclList (Chia et al.

detect

HIT Rate / Product Frequency

1000 10000 100000
Product Frequency

mm P2VRecModel
mmm GoogleModel
B SaaSModel

10 100

,2021)
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https://arxiv.org/abs/2111.09963

Degenerate feedback loops: mitigate

1. Randomization
2. Positional features

35



Randomization

e Degenerate feedback loops increase output homogeneity
e Combat homogeneity by introducing randomness in predictions

36



Randomization

e Degenerate feedback loops increase output homogeneity
e Combat homogeneity by introducing randomness in predictions
e Recsys: show users random items & use feedback to determine items’ quality

Initial, random Pool /
New video R of traffic
(100s impressions) N

Discard

37



Positional features

e |f a prediction’s position affects its feedback in any way, encode it.
o Numerical: e.g. position 1, 2, 3, ...
o Boolean: e.g. shows first position or not

38



Positional features: naive

ID | Song Genre |Year Artist User 1st Click
Position

1 [Shallow Pop 2020 |Lady Gaga listenr32 False No

2 | Good Vibe Funk 2019 | Funk Overlord listenr32 False No

3 Beat It Rock 1989 | Michael Jackson | fancypants | False No

4 | In Bloom Rock 1991 |Nirvana fancypants | True Yes

5 | Shallow Pop 2020 |Lady Gaga listenr32 True Yes

39



Positional features: naive

ID | Song Genre |Year Artist User 1st Click
Position
1 | Shallow Pop 2020 |Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 | Funk Overlord listenr32 False No

3 Beat It Rock 1989 | Michael Jackson | fancypants | False No
4 | In Bloom Rock 1991 |Nirvana fancypants | True Yes
5 | Shallow Pop 2020 |Lady Gaga listenr32 True Yes

Doesn’t have this
feature during
inference?



Positional features: naive

ID | Song Genre |Year Artist User 1st Click
Position
1 | Shallow Pop 2020 |Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 | Funk Overlord listenr32 False No

3 Beat It Rock 1989 | Michael Jackson | fancypants | False No
4 | In Bloom Rock 1991 |Nirvana fancypants | True Yes
5 | Shallow Pop 2020 |Lady Gaga listenr32 True Yes

Set to False during
inference



Positional features: 2 models

1. Predicts the probability that the user will see and consider a
recommendation given its position.

2. Predicts the probability that the user will click on the item given that
they saw and considered it.

Model 2 doesn’t
use positional
features

42



Breakout exercise

43



How might degenerate feedback loops occur? (10 mins)

1. Build a system to predict stock prices and use the predictions to make

buy/sell decisions.
2. Use text scraped from the Internet to train a language model, then use the

same language model to generate posts.

Discuss how you might mitigate the consequences of these feedback loops.

44



Data distribution
shifts



Source distribution:
Target distribution:

data the model is trained on
data the model runs inference on

46



Supervised learning: P(X, Y)

1. P(X)Y) =P(Y|X)P(X)
2. P(X)Y) =P(X]Y)P(Y)

47



Types of data distribution shifts

Type Meaning Decomposition

Covariate shift e P(X) changes P(X,Y) = P(Y|X)P(X)
e P(Y|X) remains the same

Label shift e P(Y) changes P(X,Y) =P(X[Y)P(Y)
e P(X]Y) remains the same

Concept drift e P(X) remains the same P(X,Y) = P(Y|X)P(X)
e P(Y|X) changes



e P(X) changes

Covariate shift e  P(Y|X) remains the same

Statistics: a covariate is an independent variable that can influence the
outcome of a given statistical trial.
Supervised ML: input features are covariates

49



e P(X) changes

Covariate shift e  P(Y|X) remains the same

Input distribution changes, but for a given input, output is the same

50



Covariate shift: example

e Predicts P(cancer | patient)
e P(age > 40): training > production
e P(cancer | age > 40): training = production

P(X) changes
P(Y|X) remains the same

51



Covariate shift: causes (training)

Data collection

O

@)

E.g. women >40 are encouraged by doctors to get checkups
Closely related to sampling biases

Training techniques

(@)

E.g. oversampling of rare classes

Learning process

O

E.g. active learning

P(X) changes
P(Y|X) remains the same

Predicts P(cancer | patient)
P(age > 40):

o training > production
P(cancer | age > 40):

o training = production

52



Covariate shift: causes (prod) 0

Changes in environments

e Ex 1:P(convert to paid user | free user)
o New marketing campaign attracting users from with higher income
m P(high income) increases
m P(convert to paid user | high level) remains the same

P(X) changes
P(Y|X) remains the same
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Covariate shift: causes (prod) 0

Changes in environments

e Ex 2: P(Covid | coughing sound)
o Training data from clinics, production data from phone recordings
m P(coughing sound) changes
m P(Covid | coughing sound) remains the same

P(X) changes
P(Y|X) remains the same

54



Covariate shift

e Research: if knowing in advance how the production data will differ from
training data, use importance weighting
e Production: unlikely to know how a distribution will change in advance

55


https://arxiv.org/abs/2006.04662

. e P(Y) changes
Label shift e P(X]Y) remains the same

e Output distribution changes but for a given output, input distribution stays
the same.

56



Label shift & covariate shift

Predicts P(cancer | patient)

P(age > 40): training > production .
P(cancer | age > 40): training = production °
P(cancer): training > production o
P(age > 40 | cancer): training = prediction o

P(X) change often leads to P(Y) change, so
covariate shift often means label shift

P(X) changes
P(Y|X) remains the same

P(Y) changes
P(X]Y) remains the same

57



Label shift & covariate shift

e Predicts P(cancer | patient)

e New preventive drug: reducing P(cancer | patient) for
all patients

e P(age > 40): training > production

e P(cancer|age > 40): training > production

e P(cancer): training > production

e P(age > 40 | cancer): training = prediction

Not all label shifts are covariate shifts!

P(X) changes
o—P{¥ X rematrsthe-same

P(Y) changes
P(X]Y) remains the same
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Concept Drift

e Same input, expecting different output
e P(houses in SF) remains the same

e Covid causes people to leave SF, housing prices drop
o P($5M | houses in SF)
m Pre-covid: high
m During-covid: low

P(X) remains the same
P(Y|X) changes

59



Concept Drift

e Concept drifts can be cyclic & seasonal

o Ride sharing demands high during rush hours, low otherwise
o Flight ticket prices high during holidays, low otherwise

P(X) remains the same
P(Y|X) changes

60



General data changes

e [eature change
o A feature is added/removed/updated

61



General data changes

e [eature change
o A feature is added/removed/updated

e Label schema change

o Original: {“POSITIVE”: O, “NEGATIVE": 1}
o New: {“POSITIVE”: 0, “NEGATIVE™: 1, “NEUTRAL"”: 2}

62



Detecting data distribution shifts

How to determine that two distributions are different?

63



Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, ...
o  Compute these stats during training and compare these stats in production

64



Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, ...
o  Not universal: only useful for distributions where these statistics are meaningful
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Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, ...

o  Not universal: only useful for distributions where these statistics are meaningful
o Inconclusive: if statistics differ, distributions differ. If statistics are the same, distributions can still
differ.
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Cumulative vs. sliding metrics

e Sliding: reset at each new time window

- Example cumulative and sliding accuracy on a given day

——— cumulative
dliding
975 === threshoid

| [, ™, WS,

F1

0 2 4 6 8 10 12 14 16 18 20 2
Time (hour)

This image is based on an example from MadeWithML (Goku Mohandas).


https://madewithml.com/courses/mlops/monitoring/

Detecting data distribution shifts

How to determine that two distributions are different?

2. Two-sample hypothesis test

o Determine whether the difference between two populations is statistically significant
o If yes, likely from two distinct distributions S ' 4

AN

1. Data from yesterday
2. Data from today

68



Two-sample test: KS test (Kolmogorov-Smirnov)

e Pros
o Doesn’t require any parameters of the underlying distribution
o Doesn’'t make assumptions about distribution

e Cons
o  Only works with one-dimensional data

AN

e Useful for prediction & label
distributions
e Not so useful for features

69



Two-sample test

Drift Detection

Time
Detector Tabular Image :
Series

Kolmogorov-Smirnov

Maximum Mean
Discrepancy

Learned Kernel MMD

Least-Squares Density
Difference

Chi-Squared

Mixed-type tabular
data

Classifier
Spot-the-diff
Classifier Uncertainty

Regressor Uncertainty

Categorical
Features

Online

Feature
Level

alibi-detect (OS)

Most tests work better on
low-dim data, so dim
reduction is recommended
beforehand!

70


https://github.com/SeldonIO/alibi-detect

Not all shifts are equal

e Sudden shifts vs. gradual shifts

o Sudden shifts are easier to detect than gradual shifts

71



Not all shifts are equal

e Spatial shifts vs. temporal shifts

/ N\

e New device (e.g. E.g. same users, same
mobile vs. desktop) device, but behaviors
e New users (e.g. new change over time

country)

72



Source distribution
likely a shift
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Target distribution
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Temporal shifts: time window scale matters

e Too short window: false alarms of shifts
e Too long window: takes long to detect shifts

e Granularity level: hourly, daily

75



Temporal shifts: time window scale matters

e Too short window: false alarms of shifts
e Too long window: takes long to detect shifts

e Merge shorter time scale windows -> larger time scale window
e RCA: automatically analyze various window sizes

76



Addressing data distribution shifts

1. Train model using a massive dataset

Super distribution
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Addressing data distribution shifts

2. Retrain model with new data from new distribution
o Mode

m [rain from scratch
m Fine-tune

78



Addressing data distribution shifts

2. Retrain model with new data from new distribution
o Mode

o Data
m Use data from when data started to shift
m Use data from the last X days/weeks/months
m Use data form the last fine-tuning point

Need to figure out not just when to retrain
models, but also how and what data
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Monitoring &
Observability
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Monitoring vs. observability

e Monitoring: tracking, measuring, and logging different metrics that can help

us determine when something goes wrong
e Observability: setting up our system in a way that gives us visibility into our

system to investigate what went wrong
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Monitoring vs. observability

e Monitoring: tracking, measuring, and logging different metrics that can help
us determine when something goes wrong

e Observability: setting up our system in a way that gives us visibility into our
system to investigate\what went wrong

Instrumentation
e adding timers to your functions
e counting NaNs in your features
e logging unusual events e.g. very long inputs
o



Monitoring vs. observability

e Monitoring: tracking, measuring, and logging different metrics that can help

us determine when something goes wrong
e Observability: setting up our system in a way that gives us visibility into our

system to investigate what went wrong

Observability is part of monitoring

83



Monitoring is all about metrics

e Operational metrics
e ML-specific metrics

84



Operational metrics

Latency

Throughput

Requests / minute/hour/day

% requests that return with a 2XX code
CPU/GPU utilization

Memory utilization

Availability

etc.

85



Operational metrics

Latency

Throughput

Requests / minute/hour/day

% requests that return with a 2XX code

CPU/GPU utilization

Memory utilization SLA example

o ene e Up means:
Availability o median latency <200ms

etc. o 99th percentile <2s
e 99.99% uptime (four-nines)

SLA for ML?

86



ML metrics: what to monitor

harder to monitor

easier to wmonitor

roaw inpu‘ts

features

preclictions

less like_lc/ to be caused

l:v./ human erros

« ® natural lo&;els

O\VO\iIO\E l e

aecuract/*

closer to business wetrics
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Monitoring #1: accuracy-related metrics

e Most direct way to monitor a model’s performance
o Can only do as fast as when feedback is available

88



Monitoring #1: accuracy-related metrics

e Most direct way to monitor a model’s performance
e Collect as much feedback as possible

e Example: YouTube video recommendations
o  Click through rate
o  Duration watched
o Completion rate
o Take rate



Monitoring #2: predictions

e Predictions are low-dim: easy to visualize, compute stats, and do
two-sample tests
e Changes in prediction dist. generally mean changes in input dist.

90



Monitoring #2: predictions

e Predictions are low-dim: easy to visualize, compute stats, and do
two-sample tests
e Changes in prediction dist. generally mean changes in input dist.

e Monitor odd things in predictions
o E.g.if predictions are all False in the last 10 mins

91



Monitoring #3: features

e Most monitoring tools focus on monitoring features

e [eature schema expectations
o Generated from the source distribution
o If violated in production, possibly something is wrong

e Example expectations

o Common sense: e.g. “the” is most common word in English
min, max, or median values of a feature are in [a, b]
All values of a feature satisfy a regex

Categorical data belongs to a predefined set
FEATURE_1 > FEATURE_B

O O O O
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Generate expectations with profiling & visualization

e Examining data & collecting:

. . 9 14.0 NaN c 30.0708 Nasser, Mrs. Nicholas (Adele Achem) o 10 2 female 1 1 237738
o statistics
o  informative summaries -
Age | Cabin | Embarked | Fare Name Parch | Passengerld | Pclass | Sex SibSp | Survived | Ticket
® Da n d a S D roﬁ li n q 881 [330 | NN s 7.8958 | Markun, Mr. Johann 0 882 3 male 0 [ 349257
82 (220 NN |8 105167 | Dahiberg, Miss. Gerda Utrika 0 883 3 fomale | 0 0 7562
f 883 280 |MaN S 105000 | Banfield, Mr. Frederick James o 884 2 male |0 0 CA/SOTON 34068
® a Cets 884 (250 [NaN S 7.0500 | Sutehall, Mr. Henry Jr 0 835 3 male |0 0 SOTONIOQ 392076
88 300 (NN O 201250 | Rice, Mrs. Wilam (Margaret Norton) 5 886 3 female | 0 ) 382652
88 270 [NaN S 130000 | Montvila, Rev. Juozas 0 887 2 male |0 0 211536
Features: |n'.(6) stnng(g) 887 19.0 B42 s 30.0000 ‘Graham, Miss. Margaret Edith o 888 1 female ] 1 112053
train  test 888 [NaN (NN |8 234500 | Johnston, Miss. Catherine Holen "Carrio” 2 889 3 fomale | 1 0 WJC. 6607
89 260 |cus |c 30,0000 | Beh, Mr. Kari Howell 0 890 1 male |0 1 11360
Numeric Features (6) Chart
Standard - 890 320 (NN |Q 77500 | Doolay, Mr. Patrick 0 891 3 male |0 ) 370376
count  missing mean  stddev zeros min  median MaX 00 Clexpand Cpercentages
Age
Report generated with pandas-profiling
32.6k 0% 38.58 13.64 0% b v/ 37 90
16.3k 0% 38.77 13.85 0% 17 37 90
In[ ]: M @ 0r use the HTHL report in an iframe
Capital Gain profile.to_notebook_iframe() I
32.6k 0% 1,077.65 7385.29 91.67% 0 0 100k
16.3k 0% 1,081.91 7,583.94 91.87% 0 0 100k
Capital Loss
32.6k 0% 87.3 402.96 95.33% 0 0 4,356
16.3k 0% 87.9 403.11 95.31% 0 0 3,770

Education-Num

32.6k 0% 10.08 2.57 0% 1 10 16

16.3k 0% 10.07 2.57 0% 1 10 16
fnlwgt

32.6k 0% 190k 106k 0% 12.3k 178k 1.48M

16.3k 0% 189k 106k 0% 13.5k 178k 1.49M

Hours per week
32.6k 0% 40.44 12.35 0% 1 40 99 9 3
16.3k 0% 40.39 12.48 0% 1 40 929


https://github.com/pandas-profiling/pandas-profiling
https://pair-code.github.io/facets/

Monitoring #3: features

e [eature schema expectations

GitHub - great-expectations/great_expectations

Table shape

expect_column_to_exist
expect_table_columns_to_match_ordered_list
expect_table_columns_to_match_set
expect_table_row_count_to_be_between
expect_table_row_count_to_equal

expect_table_row_count_to_equal_other_table

Missing values, unique values, and types

expect_column_values_to_be_unique
expect_column_values_to_not_be_null
expect_column_values_to_be_null
expect_column_values_to_be_of_type

expect_column_values_to_be_in_type_list

expect_column_values_to_be_ between (

column="room_temp”,
min_value=60,
max_value=75,
mostly=.95

“Values in this column should be between
60 and 75, at least 95% of the time.”

“Warning: more than 5% of values fell
outside the specified range of 60 to 75."


https://github.com/great-expectations/great_expectations

Monitoring #3: features schema with pydantic

from pydantic import BaseModel, ValidationError, validator

class UserModel(BaseModel):
name: str
username: str
passwordl: str
password2: str

@validator('name')
def name_must_contain_space(cls, v):
if ' ' not in v:
raise ValueError('must contain a space'’)
return v.title()

@validator('password2')
def passwords_match(cls, v, values, **kwargs):

if 'passwordl’ in values and v != values['passwordl']:
raise ValueError('passwords do not match')
return v

@validator('username')

def username_alphanumeric(cls, v):
assert v.isalnum(), 'must be alphanumeric'
return v

user = UserModel(
name="'samuel colvin'
username='scolvin’,
passwordl1="'zxcvbn'
password2="zxcvbn'
)
print(user)
#> name='Samuel Colvin' username='scolvin' passwordl='zxcvbn' password2='zxcvbn'

try:

UserModel(
name='samuel’,
username='scolvin’,
passwordl1="zxcvbn',
password2="zxcvbn2',

)

except ValidationError as e:
print(e)

2 validation errors for UserModel
name

must contain a space (type=value_error)
password2

passwords do not match (type=value_error)

https://pydantic-docs.helpmanual.io/usage/validators/

95



Monitoring #3: features schema with TFX

# Generate training stats & schema
train_stats = tfdv.generate_statistics_from dataframe(df)
schema = tfdv.infer schema(statistics=train_stats)

schema

feature {
name: "1"
type: FLOAT
presence {
min_fraction: 1.0
min_count: 1

# Generate serving stats

serving stats = tfdv.generate_statistics_from dataframe(serving df)
# Domain knowledge required

tfdv.get feature(schema, "diabetesMed").skew_comparator.infinity norm.threshold = 0.03
} # Compare serving stats to training stats to detect skew

skew_anomalies = tfdv.validate statistics( @
shape { statistics=train_stats,

dim { schema=schema,
size: 1 serving statistics=serving_stats)

}
}

Anomaly short description Anomaly long description

Feature name

Inavaricods! High Linfty distance between The Linfty distance between current and previous is 0.0342144 (up to six significant digits),
payer_ current and previous above the threshold 0.03. The feature value with maximum difference is: MC

\diabetesMed!" High Linfty distance between The Linfty distance between training and serving is 0.0325464 (up to six significant digits),
labetesivie training and serving above the threshold 0.03. The feature value with maximum difference is: No

How To Evaluate MLOps Tools (Hamel Husain, CS 329S Lecture 9, 2022)



https://youtu.be/GHk5HMW4XMA

Feature monitoring problems

1. Compute & memory cost
a. 100s models, each with 100s features
b. Computing stats for 10000s of features is costly
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Feature monitoring problems

2. Alert fatigue

a. Most expectation violations are benign

98



Feature monitoring problems

3. Schema management

a. Feature schema changes over time
b. Need to find a way to map feature to schema version
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Monitoring toolbox: logs

A few numbers

® Log everything Business Intelligence in Badoo \fa
: L
e A stream processing problem

420 min 20bin 2tb 2.5pb400tb

registered users events per of event of data in of data
day data per Hadoop in Exasol
day

Vladimir Kazanov (Badoo 2019)

“If it moves, we track it. Sometimes we’ll draw a graph of something
that isn’t moving yet, just in case it decides to make a run for it.”

lan Malpass (Etsy 2011)
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https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://skillsmatter.com/skillscasts/13983-data-engineering-in-badoo-handling-20-billion-events-per-day#video

Monitoring toolbox: dashboards

e Make monitoring accessible to non-engineering stakeholders
e (Good for visualizations but insufficient for discovering distribution shifts

PredictionLoss - sine PredictionLoss - tan
No unit No unit
7e-6
432
6e-6
430
6e-6
6e-6 428
6e-6
426
6e-6
424
5e-6
566 422
be:6 420
5e-6
418
5e-6
13:00 13:30 14:00 14:30 15:00 15:30 13:00 13:30 14:00 14:30 15:00 15:30 1 O 1

PredictionLoss @ PredictionLoss



Monitoring toolbox: alerts

e 3 components

o Alert policy: condition for alert
o Notification channels
o Description

e Alert fatigue

o How to send only meaningful alerts?

## Recommender model accuracy below 90%

S{timestamp}: This alert originated from the service S{service-name}
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Monitoring -> Continual Learning

e Monitoring is passive
o  Wait for a shift to happen to detect it

e Continual learning is active
o Update your models to address shifts
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Machine Learning Systems Design

Next class:

e Continual Learning

e Data Distribution Shifts on Streams
with Shreya Shankar

Stanford

i ; cs329s.stanford.edu | Chip Huyen
University


https://twitter.com/sh_reya

