
Machine Learning Systems Design
Lecture 10: Data Distribution Shifts & Monitoring

CS 329S (Chip Huyen, 2022) | cs329s.stanford.edu



Zoom etiquettes

We appreciate it
if you keep videos on!

● More visual feedback for us
to adjust materials

● Better learning environment
● Better sense of who you’re with

in class!
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Agenda
1. Natural labels & feedback loops
2. Causes of ML failures
3. Breakout exercise
4. Data distribution shifts
5. Monitoring & observability
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Lecture note is on course website / syllabus



Natural labels & 
feedback loops
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Natural labels

● The model’s predictions can be automatically evaluated or partially 
evaluated by the system.

● Examples:
○ ETA
○ Ride demand prediction
○ Stock price prediction
○ Ads CTR
○ Recommender system
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Natural labels

● You can engineer a task to have natural labels
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Natural labels: surprisingly common
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⚠ Biases ⚠
● Small sample size
● Companies might only 

use ML for tasks with 
natural labels

Claypot AI’s real-time ML survey (2022)

https://forms.gle/TxHm36cJNNzR8kWX8


Delayed labels
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Time

Prediction 
is served

Feedback 
is provided

Feedback 
loop length
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Delayed labels

● Short feedback loop: minutes -> hours
○ Reddit / Twitter / TikTok’s recommender systems

● Long feedback loop: weeks -> months
○ Stitch Fix’s recommender systems
○ Fraud detection

Time

Prediction 
is served

Feedback 
is provided

Feedback 
loop length
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Claypot AI’s real-time ML survey (2022)

https://forms.gle/TxHm36cJNNzR8kWX8


⚠ Labels are often assumed ⚠
● Recommendation:

○ Click -> good rec
○ After X minutes, no click -> bad rec
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Speed vs. accuracy 
tradeoff

● Recommendation:
○ Click -> good rec
○ After X minutes, no click -> bad rec

Too short Too long

False 
negatives

Slow 
feedback



⚠ Labels are often assumed ⚠
● Recommendation:

○ Click -> good rec
○ After X minutes, no click -> bad rec

12

Too short Too long

False 
negatives

Slow 
feedback

Addressing Delayed Feedback for Continuous Training with Neural Networks in CTR prediction (Ktena et al., 2019)

https://arxiv.org/abs/1907.06558


Causes of ML failures
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Amazon scraps secret AI recruiting tool that showed bias against women (Reuters, 2018)

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
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“Guests complained their robot 
room assistants thought snoring 

sounds were commands and 
would wake them up 

repeatedly during the night.”

https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce 

https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce


What is an ML failure?

A failure happens when one or more expectations of the system is violated.

Two types of expectations:

● Operational metrics: e.g. average latency, throughput, uptime
● ML metrics: e.g. accuracy, F1, BLEU score
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What is an ML failure?

A failure happens when one or more expectations of the system is violated

● Traditional software: mostly operational metrics
● ML systems: operational + ML metrics

○ Ops: returns an English translation within 100ms latency on average
○ ML: BLEU score of 55 (out of 100)
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ML system failures

● If you enter a sentence and get no translation back -> ops failure
● If one translation is incorrect -> ML failure?
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ML system failures

● If you enter a sentence and get no translation back -> ops failure
● If one translation is incorrect -> ML failure?
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● Not necessarily: expected BLEU score < 100
● ML failure if translations are consistently incorrect
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Ops failures ML failures

Visible
● 404, timeout, segfault, OOM, etc.

Often invisible



Causes of ops failures (software system failures)

● Dependency failures
● Deployment failures
● Hardware failures
● Network failure: downtime / crash
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Causes of ops failures (software system failures)

● Dependency failures
● Deployment failures
● Hardware failures
● Network failure: downtime / crash

22

60 / 96 ML systems failures are non-ML failures
(Papasian & Underwood, 2020)

As tooling & best practices around ML production mature, 
there will be less surface for software failures

https://www.youtube.com/watch?v=hBMHohkRgAA


ML-specific failures (during/post deployment)

1. Production data differing from training data
2. Edge cases
3. Degenerate feedback loops
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We’ve already covered problems 
pre-deployment in previous lectures!



Production data differing from training data

● Train-serving skew:
○ Model performing well during development but poorly after production

● Data distribution shifts
○ Model performing well when first deployed, but poorly over time
○ ⚠ What looks like data shifts might be caused by human errors ⚠ 
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Production data differing from training data

● Train-serving skew:
○ Model performing well during development but poorly after production

● Data distribution shifts
○ Model performing well when first deployed, but poorly over time
○ ⚠ What looks like data shifts might be caused by human errors ⚠ 
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Common & crucial. 
Will go into detail!



Edge cases

● Self-driving car (yearly)
○ Safely: 99.99%
○ Fatal accidents: 0.01%
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Zoom poll: Would you 
use this car?



Edge case vs. outlier

● Outliers
○ Refer to inputs
○ Options to ignore/remove

● Edge cases
○ Refer to outputs
○ Can’t ignore/remove
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Degenerate feedback loops

● When predictions influence the feedback, which is then used to extract 
labels to train the next iteration of the model

● Common in tasks with natural labels

28

Predictions

Users’ 
feedback

Training data



Degenerate feedback loops: recsys

● Originally, A is ranked marginally higher than B -> model recommends A
● After a while, A is ranked much higher than B

29

Model 
recommends 

item A

User clicks 
on A

Model confirms 
A is good



Degenerate feedback loops: recsys

● Originally, A is ranked marginally higher than B -> model recommends A
● After a while, A is ranked much higher than B
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Model 
recommends 

item A

User clicks 
on A

Model confirms 
A is good

Over time, 
recommendations 
become more 
homogenous



Degenerate feedback loops: resume screening

● Originally, model thinks X is a good feature
● Model only picks resumes with X
● Hiring managers only see resumes with X, so only people with X are hired
● Model confirms that X is good
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Replace X with:

● Has a name that is typically used for males
● Went to Stanford
● Worked at Google



Degenerate feedback loops: resume screening

● Originally, model thinks X is a good feature
● Model only picks resumes with X
● Hiring managers only see resumes with X, so only people with X are hired
● Model confirms that X is good

32

Tracking feature importance might help!



Detecting degenerate feedback loops

Only arise once models are in production -> hard to detect during training
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Predictions

Users’ 
feedback

Training data



Degenerate feedback loops: detect

● Average Rec Popularity (ARP)
○ Average popularity of the 

recommended items 

● Average Percentage of Long Tail 
Items (APLT)
○ average % of long tail items being  

recommended

● Hit rate against popularity
○ Accuracy based on recommended 

items’ popularity buckets
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Beyond NDCG: behavioral testing of recommender systems with RecList (Chia et al., 2021)

https://arxiv.org/abs/2111.09963


Degenerate feedback loops: mitigate

1. Randomization
2. Positional features
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Randomization

● Degenerate feedback loops increase output homogeneity
● Combat homogeneity by introducing randomness in predictions
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Randomization

● Degenerate feedback loops increase output homogeneity
● Combat homogeneity by introducing randomness in predictions
● Recsys: show users random items & use feedback to determine items’ quality
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Positional features

● If a prediction’s position affects its feedback in any way, encode it.
○ Numerical: e.g. position 1, 2, 3, …
○ Boolean: e.g. shows first position or not
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Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes



Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes

Doesn’t have this 
feature during 

inference?



Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes

Set to False during 
inference



Positional features: 2 models 

1. Predicts the probability that the user will see and consider a 
recommendation given its position.

2. Predicts the probability that the user will click on the item given that 
they saw and considered it.
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Model 2 doesn’t 
use positional 

features



Breakout exercise
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How might degenerate feedback loops occur? (10 mins)

1. Build a system to predict stock prices and use the predictions to make 
buy/sell decisions.

2. Use text scraped from the Internet to train a language model, then use the 
same language model to generate posts.

Discuss how you might mitigate the consequences of these feedback loops.
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Data distribution 
shifts

45



● Source distribution: data the model is trained on
● Target distribution: data the model runs inference on
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Supervised learning: P(X, Y)

1. P(X, Y) = P(Y|X)P(X)
2. P(X, Y) = P(X|Y)P(Y) 
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Types of data distribution shifts
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Type Meaning Decomposition

Covariate shift ● P(X) changes
● P(Y|X) remains the same

P(X, Y) = P(Y|X)P(X)

Label shift ● P(Y) changes
● P(X|Y) remains the same

P(X, Y) = P(X|Y)P(Y)

Concept drift ● P(X) remains the same
● P(Y|X) changes

P(X, Y) = P(Y|X)P(X)



Covariate shift

● Statistics: a covariate is an independent variable that can influence the 
outcome of a given statistical trial.

● Supervised ML: input features are covariates

49

● P(X) changes
● P(Y|X) remains the same



Covariate shift

● Statistics: a covariate is an independent variable that can influence the 
outcome of a given statistical trial.

● Supervised ML: input features are covariates
● Input distribution changes, but for a given input, output is the same
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● P(X) changes
● P(Y|X) remains the same



Covariate shift: example

● Predicts P(cancer | patient)
● P(age > 40): training > production
● P(cancer | age > 40): training = production
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● P(X) changes
● P(Y|X) remains the same



Covariate shift: causes (training)

● Data collection
○ E.g. women >40 are encouraged by doctors to get checkups
○ Closely related to sampling biases

● Training techniques
○ E.g. oversampling of rare classes

● Learning process
○ E.g. active learning
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● Predicts P(cancer | patient)
● P(age > 40):

○ training > production
● P(cancer | age > 40):

○ training = production

● P(X) changes
● P(Y|X) remains the same



Covariate shift: causes (prod)

Changes in environments

● Ex 1: P(convert to paid user | free user)
○ New marketing campaign attracting users from with higher income

■ P(high income) increases
■ P(convert to paid user | high level) remains the same
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● P(X) changes
● P(Y|X) remains the same



Covariate shift: causes (prod)

Changes in environments

● Ex 2: P(Covid | coughing sound)
○ Training data from clinics, production data from phone recordings

■ P(coughing sound) changes
■ P(Covid | coughing sound) remains the same
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● P(X) changes
● P(Y|X) remains the same



Covariate shift

● Research: if knowing in advance how the production data will differ from 
training data, use importance weighting

● Production: unlikely to know how a distribution will change in advance
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https://arxiv.org/abs/2006.04662


Label shift

● Output distribution changes but for a given output, input distribution stays 
the same.
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● P(Y) changes
● P(X|Y) remains the same



Label shift & covariate shift

● Predicts P(cancer | patient)
● P(age > 40): training > production
● P(cancer | age > 40): training = production
● P(cancer): training > production
● P(age > 40 | cancer): training = prediction

57

● P(Y) changes
● P(X|Y) remains the same

● P(X) changes
● P(Y|X) remains the same

P(X) change often leads to P(Y) change, so 
covariate shift often means label shift



Label shift & covariate shift
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● Predicts P(cancer | patient)
● New preventive drug: reducing P(cancer | patient) for 

all patients
● P(age > 40): training > production
● P(cancer | age > 40): training > production
● P(cancer): training > production
● P(age > 40 | cancer): training = prediction

● P(X) changes
● P(Y|X) remains the same

Not all label shifts are covariate shifts!

● P(Y) changes
● P(X|Y) remains the same



Concept Drift

● Same input, expecting different output
● P(houses in SF) remains the same
● Covid causes people to leave SF, housing prices drop

○ P($5M | houses in SF)
■ Pre-covid: high
■ During-covid: low
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● P(X) remains the same
● P(Y|X) changes



Concept Drift

● Concept drifts can be cyclic & seasonal
○ Ride sharing demands high during rush hours, low otherwise
○ Flight ticket prices high during holidays, low otherwise
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● P(X) remains the same
● P(Y|X) changes



General data changes

● Feature change
○ A feature is added/removed/updated
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General data changes

● Feature change
○ A feature is added/removed/updated

● Label schema change
○ Original: {“POSITIVE”: 0, “NEGATIVE”: 1}
○ New: {“POSITIVE”: 0, “NEGATIVE”: 1, “NEUTRAL”: 2}
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Detecting data distribution shifts

How to determine that two distributions are different?
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Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Compute these stats during training and compare these stats in production
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Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Not universal: only useful for distributions where these statistics are meaningful
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Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Not universal: only useful for distributions where these statistics are meaningful
○ Inconclusive:  if statistics differ, distributions differ. If statistics are the same, distributions can still 

differ.
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Cumulative vs. sliding metrics

● Sliding: reset at each new time window

67
This image is based on an example from MadeWithML (Goku Mohandas).

https://madewithml.com/courses/mlops/monitoring/


Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
2. Two-sample hypothesis test

○ Determine whether the difference between two populations is statistically significant
○ If yes, likely from two distinct distributions

68

E.g.
1. Data from yesterday
2. Data from today



Two-sample test: KS test (Kolmogorov–Smirnov)

● Pros
○ Doesn’t require any parameters of the underlying distribution
○ Doesn’t make assumptions about distribution

● Cons
○ Only works with one-dimensional data
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● Useful for prediction & label 
distributions

● Not so useful for features



Two-sample test
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alibi-detect (OS)

Most tests work better on 
low-dim data, so dim 
reduction is recommended 
beforehand!

https://github.com/SeldonIO/alibi-detect


Not all shifts are equal
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● Sudden shifts vs. gradual shifts
○ Sudden shifts are easier to detect than gradual shifts



Not all shifts are equal
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● Sudden shifts vs. gradual shifts
● Spatial shifts vs. temporal shifts

● New device (e.g. 
mobile vs. desktop)

● New users (e.g. new 
country)

E.g. same users, same 
device, but behaviors 
change over time



Temporal shifts: time window scale matters

73Target distribution

Source distribution: 
likely a shift

Source distribution: 
unlikely a shift



Temporal shifts: time window scale matters
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Difficulty is compounded 
by seasonal variation



Temporal shifts: time window scale matters

● Too short window: false alarms of shifts
● Too long window: takes long to detect shifts

75

● Granularity level: hourly, daily



Temporal shifts: time window scale matters

● Too short window: false alarms of shifts
● Too long window: takes long to detect shifts
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● Granularity level: hourly, daily
● Merge shorter time scale windows -> larger time scale window
● RCA: automatically analyze various window sizes



Addressing data distribution shifts

1. Train model using a massive dataset
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Addressing data distribution shifts

1. Train model using a massive dataset
2. Retrain model with new data from new distribution

○ Mode
■ Train from scratch
■ Fine-tune

78



Addressing data distribution shifts

1. Train model using a massive dataset
2. Retrain model with new data from new distribution

○ Mode
○ Data

■ Use data from when data started to shift
■ Use data from the last X days/weeks/months
■ Use data form the last fine-tuning point
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Need to figure out not just when to retrain 
models, but also how and what data



Monitoring & 
Observability
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Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help 
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our 
system to investigate what went wrong
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Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help 
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our 
system to investigate what went wrong
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Instrumentation
● adding timers to your functions
● counting NaNs in your features
● logging unusual events e.g. very long inputs
● …



Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help 
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our 
system to investigate what went wrong

83

Observability is part of monitoring



Monitoring is all about metrics

● Operational metrics
● ML-specific metrics
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Operational metrics

● Latency
● Throughput
● Requests / minute/hour/day
● % requests that return with a 2XX code
● CPU/GPU utilization
● Memory utilization
● Availability
● etc.
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Operational metrics

● Latency
● Throughput
● Requests / minute/hour/day
● % requests that return with a 2XX code
● CPU/GPU utilization
● Memory utilization
● Availability
● etc.
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SLA example
● Up means:

○ median latency <200ms
○ 99th percentile <2s

● 99.99% uptime (four-nines)

SLA for ML?



ML metrics: what to monitor
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Monitoring #1: accuracy-related metrics

● Most direct way to monitor a model’s performance
○ Can only do as fast as when feedback is available
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Monitoring #1: accuracy-related metrics

● Most direct way to monitor a model’s performance
● Collect as much feedback as possible
● Example: YouTube video recommendations

○ Click through rate
○ Duration watched
○ Completion rate
○ Take rate
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Monitoring #2: predictions

● Predictions are low-dim: easy to visualize, compute stats, and do 
two-sample tests

● Changes in prediction dist. generally mean changes in input dist.
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Monitoring #2: predictions

● Predictions are low-dim: easy to visualize, compute stats, and do 
two-sample tests

● Changes in prediction dist. generally mean changes in input dist.
● Monitor odd things in predictions

○ E.g. if predictions are all False in the last 10 mins
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Monitoring #3: features

● Most monitoring tools focus on monitoring features
● Feature schema expectations

○ Generated from the source distribution
○ If violated in production, possibly something is wrong

● Example expectations
○ Common sense: e.g. “the” is most common word in English
○ min, max, or median values of a feature are in [a, b]
○ All values of a feature satisfy a regex
○ Categorical data belongs to a predefined set
○ FEATURE_1 > FEATURE_B
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Generate expectations with profiling & visualization
● Examining data & collecting:

○ statistics
○ informative summaries

● pandas-profiling
● facets
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https://github.com/pandas-profiling/pandas-profiling
https://pair-code.github.io/facets/


Monitoring #3: features

● Feature schema expectations
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GitHub - great-expectations/great_expectations

https://github.com/great-expectations/great_expectations


Monitoring #3: features schema with pydantic
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https://pydantic-docs.helpmanual.io/usage/validators/



Monitoring #3: features schema with TFX
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How To Evaluate MLOps Tools (Hamel Husain, CS 329S Lecture 9, 2022) 

https://youtu.be/GHk5HMW4XMA


Feature monitoring problems

1. Compute & memory cost
a. 100s models, each with 100s features
b. Computing stats for 10000s of features is costly
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Feature monitoring problems

1. Compute & memory cost
2. Alert fatigue

a. Most expectation violations are benign
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Feature monitoring problems

1. Compute & memory cost
2. Alert fatigue
3. Schema management

a. Feature schema changes over time
b. Need to find a way to map feature to schema version
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Monitoring toolbox: logs

● Log everything
● A stream processing problem
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“If it moves, we track it. Sometimes we’ll draw a graph of something 
that isn’t moving yet, just in case it decides to make a run for it.”

Ian Malpass (Etsy 2011)

Vladimir Kazanov (Badoo 2019)

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://skillsmatter.com/skillscasts/13983-data-engineering-in-badoo-handling-20-billion-events-per-day#video


Monitoring toolbox: dashboards

● Make monitoring accessible to non-engineering stakeholders
● Good for visualizations but insufficient for discovering distribution shifts
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Monitoring toolbox: alerts

● 3 components
○ Alert policy: condition for alert
○ Notification channels
○ Description

● Alert fatigue
○ How to send only meaningful alerts?
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## Recommender model accuracy below 90%

${timestamp}: This alert originated from the service ${service-name}



Monitoring -> Continual Learning

● Monitoring is passive
○ Wait for a shift to happen to detect it

● Continual learning is active
○ Update your models to address shifts
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Machine Learning Systems Design
Next class:
● Continual Learning
● Data Distribution Shifts on Streams

with Shreya Shankar

cs329s.stanford.edu | Chip Huyen

https://twitter.com/sh_reya

