1 of 54

1

July. 11th, 2024

Mini Symposium on “Determinantal Point Processes, Quantum Mechanics and Signal Analysis”

Department of Physics, Chuo University, Tokyo

Saori MORIMOTO Joint work with M.Katori and T.Shirai

Eigenvalues and Pseudospectra in Non-Hermitian and Non-Normal Matrix-Valued Processes

arXiv/math-ph/2401.08129

2 of 54

Outline

1. Introduction

1.1. Classification of Matrices

1.2. Symbol Curve of Toeplitz Operators

1.3. Definition of Pseudospectrum

2. Non-normal Matrix-valued Processes

3. Theorems on Eigenvalue Processes

4. Numerical Study of Pseudospectrum Processes

5. Symbol Curve of The Two models

6. Upper Bounds of Pseudospectrum Processes

7. Future Problems

2

3 of 54

1.1. Classification of Matrices

3

 

 

 

 

Our models

 

 

generalized eigenvectors

 

 

 

Jordon Block

4 of 54

1.2. Symbol Curves of Toeplitz Operators

 

4

 

 

 

5 of 54

1.2. Symbol Curves of Toeplitz Operators

 

5

 

 

 

6 of 54

1.2. Symbol Curves of Toeplitz Operators

 

6

 

 

 

7 of 54

1.2. Symbol Curves of Toeplitz Operators

 

7

 

 

 

 

8 of 54

Theorems for Banded Toeplitz Matrices

8

Lloyd N. Trefethen, Mark Embree, `Spectra and Pseudospectra, The Behavior of Nonnormal Matrices and Operators', Princeton University Press, Princeton and Oxford, 2005

 

Proposition [ Trefethen-Embree 2005 ]

 

Theorem [ Trefethen-Embree 2005 ]

9 of 54

1.3. Definition of Pseudospectrum

9

 

 

Example of the resolvent norm from [1]

 

10 of 54

2. Non-normal Matrix-valued Processes (Model 1)

 

10

 

 

 

 

11 of 54

2. Non-normal Matrix-valued Processes (Model 2)

 

11

 

 

 

 

12 of 54

Compare Model 1 and Model 2

12

 

Model 2

 

 

Model 1

 

13 of 54

Compare Model 1 and Model 2

13

 

Model 2

 

 

Model 1

 

14 of 54

3. Theorems on Eigenvalue Processes (Model1)

 

14

 

Theorem 3.1

・・・ (3.1)

15 of 54

Solution of the equation (3.1)

15

 

Theorem 3.1

・・・ (3.1)

 

16 of 54

3. Theorems on Eigenvalue Processes (Model1)

16

 

 

 

Theorem 3.1

・・・ (3.1)

17 of 54

3. Theorems on Eigenvalue Processes (Model1)

17

 

 

Theorem 3.1

・・・ (3.1)

 

18 of 54

3. Theorems on Eigenvalue Processes (Model1)

18

 

 

Theorem 3.1

・・・ (3.1)

 

19 of 54

3.1. Theorems on Eigenvalue Processes (Model1)

19

 

 

Theorem 3.1

・・・ (3.1)

 

20 of 54

3. Theorems on Eigenvalue processes (Model2)

 

20

 

Theorem 3.2

・・・ (3.2)

21 of 54

Compare Model 1 and Model 2

21

 

 

Theorem 3.1

・・・ (3.1)

 

Theorem 3.2

・・・ (3.2)

22 of 54

Solution of the equation (3.2)

22

 

 

Theorem 3.2

・・・ (3.2)

23 of 54

3. Theorems on Eigenvalue Processes (Model2)

23

 

 

 

Theorem 3.2

・・・ (3.2)

24 of 54

3. Theorems on Eigenvalue Processes (Model2)

24

 

 

 

Theorem 3.2

・・・ (3.2)

25 of 54

3. Theorems on Eigenvalue Processes (Model2)

25

 

 

 

Theorem 3.2

・・・ (3.2)

26 of 54

3. Theorems on The Eigenvalue Processes

26

 

 

 

Theorem 3.2

・・・ (3.2)

27 of 54

4. Numerical Study of Pseudospectrum Processes

27

 

 

28 of 54

4.1. Eigenvalues and Pseudospectrum (Model1)

28

 

 

 

29 of 54

4.1. Eigenvalues and Pseudospectrum (Model1)

29

 

 

 

30 of 54

4.2. Eigenvalues and Pseudospectrum (Model2)

30

 

 

 

31 of 54

4.2. Eigenvalues and Pseudospectrum (Model2)

31

 

 

 

32 of 54

Conjecture 1

Numerical calculation suggests peak structures in the pseudospectrum.

More precise study is desired.

32

exact eigenvalues

pseudospectrum

eigenvalue-like (peak) structures

 

33 of 54

5. Symbol Curve of Model 1

 

33

 

Symbol curves

Compare with the inner structure and symbol curve

 

34 of 54

5. Symbol curve of Model 2

 

34

 

Symbol curves

Compare with the inner structure and symbol curve

 

35 of 54

Conjecture 2

35

inner part of the “eigenvalues”

outermost closed simple curve

“eigenvalues”

inner part of symbol curve

exact eigenvalues

36 of 54

Conjecture 2

 

36

inner part of the “eigenvalues”

outermost closed simple curve

“eigenvalues”

inner part of symbol curve

exact eigenvalues

37 of 54

 

37

 

 

 

 

38 of 54

6.1. Jordan Decomposition

We have proved the following.

38

 

 

39 of 54

6.1. Jordan Decomposition

 

39

40 of 54

6.2. Jordan Expansion of Resolvent

 

40

 

 

41 of 54

6.3. Upper Bounds of Pseudospectrum Processes (Model1)

41

 

 

 

 

 

42 of 54

6.3. Upper Bounds of Pseudospectrum Processes (Model1)

42

 

 

 

 

 

 

43 of 54

7. Future Problems

 

43

44 of 54

References

44

Thank you very much for your attention.

[1] Trefethen, L. N., Embree, M.: Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators, vol. 1. Princeton University Press, Princeton (2005)

[2] Morimoto, S., Makoto, M., Shirai, T.: Eigenvalue and pseudospectrum processes generated by non-normal Toeplitz matrices with perturbation, arXiv/math-ph/2401.08129.

45 of 54

Introduction

 

45

46 of 54

0.1. The matrix-valued BM starts from the null matrix

 

46

 

47 of 54

0.2. The matrix-valued BM starts from the shift matrix

 

47

 

 

 

48 of 54

0.3. Shift matrix with Gaussian random perturbation

 

48

 

49 of 54

0.4. Shift dynamics with Gaussian random perturbation

49

 

 

 

 

 

50 of 54

Appearance of devil’s staircase

 

50

 

51 of 54

Appearance of devil’s staircase

 

51

 

52 of 54

 

52

 

Model 2

 

 

 

53 of 54

 

53

 

Theorem 2.1

・・・ (2)

 

 

 

54 of 54

6.3. Upper Bounds of Pseudospectrum Processes (Model1)

54