Mixed Strategy Equilibrium: �Theorems 3 and 4
Roman Sheremeta, Ph.D.
Professor, Weatherhead School of Management
Case Western Reserve University
1
Outline�
2
Review�
3
| Player 2 | ||
| | s21 | s22 |
Player 1 | s11 | u1(s11,s21), u2(s11,s21) | u1(s11,s22), u2(s11,s22) |
s12 | u1(s12,s21), u2(s12,s21) | u1(s12,s22), u2(s12,s22) | |
r
1-r
1-q
q
Review�
4
| Player 2 | ||
| | s21 | s22 |
Player 1 | s11 | u1(s11,s21), u2(s11,s21) | u1(s11,s22), u2(s11,s22) |
s12 | u1(s12,s21), u2(s12,s21) | u1(s12,s22), u2(s12,s22) | |
r
1-r
1-q
q
Review�
5
| Player 2 | ||
| | s21 | s22 |
Player 1 | s11 | u1(s11,s21), u2(s11,s21) | u1(s11,s22), u2(s11,s22) |
s12 | u1(s12,s21), u2(s12,s21) | u1(s12,s22), u2(s12,s22) | |
r
1-r
1-q
q
2-Player Game�
{Player 1, Player 2}
S1={s11,s12,...,s1J}
S2={s21,s22,...,s2K}
u1(s1j,s2k) for j = 1, 2, ..., J and k = 1, 2, ..., K
u2(s1j,s2k) for j = 1, 2, ..., J and k = 1, 2, ..., K
6
2-Player Game�
Player 1’s mixed strategy: p1=(p11, p12, ..., p1J )
Player 2’s mixed strategy: p2=(p21, p22, ..., p2K )
7
| | Player 2 | |||
| | s21 (p21) | s22 (p22) | ....... | s2K (p2K) |
Player 1 | s11 (p11) | u2(s11, s21) u1(s11, s21) | u2(s11, s22) u1(s11, s22) | ....... | u2(s11, s2K) u1(s11, s2K) |
s12 (p12) | u2(s12, s21) u1(s12, s21) | u2(s12, s22) u1(s12, s22) | ....... | u2(s12, s2K) u1(s12, s2K) | |
.... | ...... | ...... | ....... | ...... | |
s1J (p1J) | u2(s1J, s21) u1(s1J, s21) | u2(s1J, s22) u1(s1J, s22) | ...... | u2(s1J, s2K) u1(s1J, s2K) | |
2-Player Game:�Mixed Strategy Equilibrium
p1*=(p11*,p12*, ...,p1J*)
p2*=(p21*,p22*, ...,p2K*)
Eu1(p1*,p2*) ≥ Eu1(p1,p2*), for all player 1’s mixed strategy p1
Eu2(p1*,p2*) ≥ Eu2(p1*,p2), for all player 2’s mixed strategy p2
8
Theorem 3�
p1*=(p11*, p12*, ..., p1J* )
p2*=(p21*, p22*, ..., p2K* )
Eu1(p1*,p2*) ≥ Eu1(s1j,p2*), for j = 1, 2, ..., J
Eu2(p1*,p2*) ≥ Eu2(p1*,s2k), for k= 1, 2, ..., K
9
Theorem 4�
p1*=(p11*, p12*, ..., p1J* )
p2*=(p21*, p22*, ..., p2K* )
if p1m*>0 and p1n*>0 then Eu1(s1m,p2*) = Eu1(s1n,p2*)
if p1m*>0 and p1n*=0 then Eu1(s1m,p2*) ≥ Eu1(s1n,p2*)
if p2i*>0 and p2k*>0 then Eu2(p1*,s2i) = Eu2(p1*,s2k)
if p2i*>0 and p2k*=0 then Eu2(p1*,s2i) ≥ Eu2(p1*,s2k)
10
Theorem 4:�Implications
11
Theorem 4:�Illustration
Eu1(T,p2) = 0×0 + 3×(1/3) + 1×(2/3) = 5/3
Eu1(M,p2) = 4×0 + 0×(1/3) + 2×(2/3) = 4/3
Eu1(B,p2) = 3×0 + 5×(1/3) + 0×(2/3) = 5/3
12
| | | Player 2 | |
| | L (0) | C (1/3) | R (2/3) |
Player 1 | T (3/4) | 0 , 2 | 3 , 3 | 1 , 1 |
M (0) | 4 , 0 | 0 , 4 | 2 , 3 | |
B (1/4) | 3 , 4 | 5 , 1 | 0 , 7 |
Theorem 4:�Illustration
Eu2(p1,L) = 2×(3/4) + 4×(1/4) = 5/2
Eu2(p1,C) = 3×(3/4) + 3×(1/4) = 5/2
Eu2(p1,R) = 1×(3/4) + 7×(1/4) = 5/2
13
| | | Player 2 | |
| | L (0) | C (1/3) | R (2/3) |
Player 1 | T (3/4) | 0 , 2 | 3 , 3 | 1 , 1 |
M (0) | 4 , 0 | 0 , 4 | 2 , 3 | |
B (1/4) | 3 , 4 | 5 , 1 | 0 , 7 |
Rock, Paper and Scissors�
14
| | | Player 2 | |
| | Rock | Paper | Scissors |
Player 1 | Rock | 0 , 0 | -1 , 1 | 1 , -1 |
Paper | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors | -1 , 1 | 1 , -1 | 0 , 0 |
Experiment #5: Rock, Paper and Scissors�
15
Experiment #5: Rock, Paper and Scissors�
16
Rock, Paper and Scissors�
17
Rock, Paper and Scissors�
18
| | | Player 2 | |
| | Rock | Paper | Scissors |
Player 1 | Rock | 0 , 0 | -1 , 1 | 1 , -1 |
Paper | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
19
| | | Player 2 | |
| | Rock (p21) | Paper (p22) | Scissors (p23) |
Player 1 | Rock (p11) | 0 , 0 | -1 , 1 | 1 , -1 |
Paper (p12) | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors (p13) | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
20
| | | Player 2 | |
| | Rock (p21) | Paper (p22) | Scissors (p23) |
Player 1 | Rock (p11) | 0 , 0 | -1 , 1 | 1 , -1 |
Paper (p12) | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors (p13) | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
21
| | | Player 2 | |
| | Rock (p21) | Paper (p22) | Scissors (p23) |
Player 1 | Rock (p11) | 0 , 0 | -1 , 1 | 1 , -1 |
Paper (p12) | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors (p13) | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
22
| | | Player 2 | |
| | Rock (p21) | Paper (p22) | Scissors (p23) |
Player 1 | Rock (p11) | 0 , 0 | -1 , 1 | 1 , -1 |
Paper (p12) | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors (p13) | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
Eu1(Rock, p2) = Eu1(Paper, p2) = Eu1(Scissors, p2) = 0
Eu2(p1, Rock) = Eu2(p1, Paper) = Eu2(p1, Scissors) = 0
23
| | | Player 2 | |
| | Rock (p21) | Paper (p22) | Scissors (p23) |
Player 1 | Rock (p11) | 0 , 0 | -1 , 1 | 1 , -1 |
Paper (p12) | 1 , -1 | 0 , 0 | -1 , 1 | |
Scissors (p13) | -1 , 1 | 1 , -1 | 0 , 0 |
Rock, Paper and Scissors�
24
Rock, Paper and Scissors�
25
Exercise�
(B,L)
(T,R)
26
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
Exercise: Case 1�
27
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
Exercise: Case 2�
28
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
Exercise: Case 3�
29
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
Exercise: Case 4�
30
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
Rock, Paper and Scissors�
31
Exercise�
(B,L)
(T,R)
((1,0),(0,p22,1-p22)) for any 0<p22≤0.5
((0,1),(p21,0,1-p21)) for and 0.5≤p21<1
32
| | | Player 2 | |
| | L (p21) | M (p22) | R (p23) |
Player 1 | T (p11) | 2 , 2 | 0 , 3 | 1 , 3 |
B (p12) | 3 , 2 | 1 , 1 | 0 , 2 |
P vs NP�
33
All-pay Auction (Contest)�
34
Thank you!
Roman Sheremeta, Ph.D.
Professor, Weatherhead School of Management
Case Western Reserve University
35
References�
36