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Review: Generative Model for Anomaly Detection
● Explicit (e.g. VAE) or implicit (e.g. GAN) estimation of  log p(x)
● Building Blocks

○ Model
○ Embedding Architecture
○ Anomaly Metric
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From Autoencoder to Variational Autoencoder
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● VAE: 
○ enforce a prior distribution in the

 Latent space through a D_KL 
(Kullback-Leibler Divergence) term

 (regularization term to autoencoder)
○ Likelihood estimation:

logp(x) > -LVAE : Evidence Lower Bound 
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● VAE: 
○ enforce a prior distribution in the

 Latent space through a D_KL 
(Kullback-Leibler Divergence) term

 (regularization term to autoencoder)
○ Likelihood estimation:

logp(x) > -LVAE : Evidence Lower Bound 
○ Generative model:

Sample from gaussians → generate 
new jets

○ Anomaly Detection: distance in input
space (Mean Squared Error (MSE)); latent space (KL divergence)



Settings
● Simple FCN/LSTM architecture
● Taking the first 20 pt-ordered jet constituents (zero-padded)

○ Inputs:  four vectors (E, Px, Py, Pz) of jet constituents (particle flow objects)
○ Preprocessing: Boost to jet rest frame, Centering, Rotating →  Principal axis 

alignment
● Train on 600,000 QCD jets (of which 20% serve as validation set)

○  QCD dijet production: pp → jj  
○ ATLAS fatjet trigger: R = 1.0 antikt jets, pT > 450 GeV
○ No trimming applied

● VAE 
○ dhidden = 10
○     = 0.1, 0.5, 1, 5
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KL Regularization Strength -- beta = 0.1 
● MSE and KL both has

jet mass correlation
● Very strong mass 

correlation in latent space
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KL Regularization Strength
● As beta increases, 

reconstruction 
performance 
decreases. Latents 
develop different 
modes (mass 
modes).

● KL vanishing for 
beta>~1
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beta=0.1 beta=0.5

beta=1 beta>~1



Jet Tagging Performance
● Datasets:

○ Background: QCD, R=0.1, pT>450 GeV
○ Testing on pT :[550, 650] GeV

■ 2-prong: W (W’ → W Z)
● M: 59 GeV, 80 GeV, 120 GeV

■ 3-prong: Top (Z’ → t t~)
● M: 80 GeV, 174 GeV

■ H(->hh->4j),  MH=174 GeV
● Mh = 20 GeV,  80 GeV

● Anomaly Metric
● Examine:

○ Jet mass effects
○ pT effects (training on full pt, test on fixed pt)
○ Jet type (focus on prong-ness)
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Test results for Top Tagging Reference Data 
(* T. Heimel , G. Kasieczka , T. Plehn , and J. M 
Thompson.  QCD or What? arXiv:1808.08979.)



● Jet mass dependence: discriminative power decreases when jet mass 
decreases (mass correlation) ---> works well for Top, but low significance 
for W jets

● Jet complexity dependence

Jet Tagging Performance
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better

beta=0.1



Jet Tagging Performance
● Anomaly Metric

○ Reconstruction error: MSE
○ Negative Log Likelihood: MSE+KL
○ Latent space: KL divergence
○ EMD(Energy Mover Distance) between inputs and outputs
○ MSS: l2 norm the input feature vector (chi2)
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● Outliers can be assigned higher probability sometimes, this happens in a 
general scope of anomaly detection using generative models

● Quick example: MSE based anomaly metric has intrinsic mass 
dependence → naive VAE assigns higher probability to lower mass jets  

Anomaly Detection can Fail
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QCD W

● D. Hendrycks, M. Mazeika, T. Dietterich.
Deep Anomaly Detection with Outlier Exposure.
arXiv: 1812.04606 m_j

LL

m_j



Outlier Exposure (OE)
● Is the VAE learning useful enough representations? 

○ Restricted by the format of loss function
○ Need extra information to guide directions for better anomaly detection

● Semi-supervised Learning: encourage specific directions in the loss 
landscape
○ Relative weight lambda controls the OE strength
○ Restricting reconstruction error strength between Out-of-distribution (OoD) 

and In-distribution (InD) samples

○ Restricting KL divergence in latent space

● Training Scenarios:
○ Fine-tuning using outlier exposure
○ Train with outlier exposure from scratch (results shown for this scenario)
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● Quick test on training VAE with top jets, using QCD as outlier exposure 
samples → test on QCD and W jets

Quick Test -- Top Tagging Reference Data -- OE(QCD) Training on Top
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AUC = 0.939

W

QCD

AUC =  0.920

m_jL



Outlier Exposure -- Results
● Outlier samples: W (mass rescaled) jets with mass distribution reweighted 

to match QCD jets (→ mass decorrelation)
● Annealing training of OE weight lambda (cyclically annealing, from 0 - 2)
● Results:

○ Test on different jet type and jet mass 
○ Mass decorrelation
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Outlier Exposure -- Results -- MSE-OE 
● Train using MSE outlier exposure loss term
● Anomaly metric: MSE
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Outlier Exposure -- Results -- MSE-OE 
● Train using MSE outlier exposure loss term
● Anomaly metric: MSE+KL (since KL and MSE are correlated; MSE+KL 

better in MSE-OE case)

17before after
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Outlier Exposure -- Results -- KL-OE
● Training using latent KL OE loss
● Reconstruction performance unchanged
● Using latent KL divergence directly as 

anomaly metric → very good mass 
decorrelation
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MSE+KL

KL

Without OE

With OE

KL

*results shown here are trained using OE unreweighted samples



Summary
● Explored Generative Model (VAE) for anomaly detection  
● KL Regularization
● Anomalous Jet Tagging

○ Different jet masses
○ Different jet types
○ Anomaly metrics

● Outlier exposure to increase sensitivity to out-of-distribution samples
○ Especially in latent space

● Mass correlation affected by outlier exposure ←  mass sculpting  
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Outlook
● Architecture and input representation
● Reconstruction loss



Backup
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● Latent dimension = 10 (best: 6 - 20)

VAE Architecture -- FCN

D
ense
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Reconstruction Performance
● Input features

● High Level features 
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Sampling from 
latent priors → 
decoder

generation

beta=0.1



Investigation on MSE Anomaly Metric
● Pure non-ML metric: 
● MSE-based anomaly metric doesn’t require perfect reconstruction
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Top Tagging Reference

W test jets



Generator
● Sample from prior latent distribution 
● Specific dimensions more correlated with mass
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Input space Jet Images Jet pt Jet mass


