Deep Representation Learning for Unsupervised Learning on Graphs
Oct 28th, 2025
Goals for today
Overview of algorithms for unsupervised representation learning
Limitations of shallow methods
Unsupervised representation learning on graphs
task: what we want to reconstruct back
Embedding graphs with node attributes
x1
x2
xd
…..
3
4
5
6
7
1
2
Learn embedding
x11
x12
x1d
…..
x1
x2
xd
…..
x1
x2
xd
…..
x1
x2
xd
…..
x51
x52
x5d
…..
x1
x2
xd
…..
x1
x4
x3
x2
x7
x5
x6
3
4
5
6
7
1
2
node attributes
Goals for today
Autoencoder
Autoencoder
From Antonio Longa’s tutorial: https://github.com/AntonioLonga/PytorchGeometricTutorial/tree/main
Autoencoder
From Antonio Longa’s tutorial: https://github.com/AntonioLonga/PytorchGeometricTutorial/tree/main
embedding
Autoencoder
encoder
decoder
Input
Output
Adapted from Ava Amini slides; see https://www.youtube.com/watch?v=3G5hWM6jqPk
Autoencoder vs Variational Autoencoder
https://towardsdatascience.com/tutorial-on-variational-graph-auto-encoders-da9333281129
Variational Autoencoder
Adapted from Ava Amini slides; see https://www.youtube.com/watch?v=3G5hWM6jqPk
encoder
decoder
Goals for today
Notation
Graph AutoEncoder (GAE)
encoder
decoder
logistic, sigmoid
Encoder:
Decoder:
3
4
5
6
7
1
2
x1
x2
xd
…..
3
4
5
6
7
1
2
x11
x12
x1d
…..
x1
x2
xd
…..
x1
x2
xd
…..
x1
x2
xd
…..
x51
x52
x5d
…..
x1
x2
xd
…..
x1
x4
x3
x2
x7
x5
x6
Variational Graph Autoencoder (VGAE)
encoder
decoder
3
4
5
6
7
1
2
x1
x2
xd
…..
3
4
5
6
7
1
2
x11
x12
x1d
…..
x1
x2
xd
…..
x1
x2
xd
…..
x1
x2
xd
…..
x51
x52
x5d
…..
x1
x2
xd
…..
x1’
x4
x3
x2
x7
x5
x6
Encoder for the VGAE
a two layer GCN
Decoder for the VGAE
Loss function
Where,
Evaluation of GAE and VGAE
Evaluation of GAE and VGAE
SC: Spectral clustering
DW: DeepWalk
GAE*, VGAE*: Variants with no features
VGAE’s embedding can reveal clustering structure
Latent space of unsupervised VGAE model trained on Cora citation network dataset. Grey lines denote citation links. Colors denote document class (not provided during training).
Overview of GNN methods for clustering
Su, X. et al. A Comprehensive Survey on Community Detection with Deep Learning. IEEE Trans. Neural Netw. Learning Syst. 1–21 (2022) doi:10.1109/TNNLS.2021.3137396.
Overview of deep methods for graph clustering
The general idea of methods for graphs with node attributes
x1
x2
xd
…..
3
4
5
6
7
1
2
3
4
5
6
7
1
2
Learn embedding
x11
x12
x1d
…..
x1
x2
xd
…..
x1
x2
xd
…..
x1
x2
xd
…..
x51
x52
x5d
…..
x1
x2
xd
…..
x1
x4
x3
x2
x7
x5
x6
kmeans clustering
3
4
5
6
7
1
2
node attributes
Note 1: Most methods aim to do this in an unsupervised manner because we assume we don’t have labels.
Note 2: The node embedding could be further influenced by the “clustering” structure
Does deep node embedding help for biological network module detection?
Song Z, Baur B and Roy S. Benchmarking graph representation learning algorithms for detecting modules in molecular networks [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 2023, 12:941 (https://doi.org/10.12688/f1000research.134526.1)
References