Hanzhi Wang
The University of Melbourne
Sublinear-Time Algorithms for Random-Walk Probability Estimation on Large Graphs
11 December 2025
0
Outline
Background
2
Contributions and Techniques
4
Problem Definitions
3
Overview
1
Future Work
5
1
Outline
Background
2
Techniques
4
Problem and Contributions
3
Overview
1
Future Work
5
2
Background
V.S.
1. Hardware Advances
2. Algorithm Improvements
How to Process Data at a Massive Scale?
Trend of Electricity Consumption
enormous costs,
huge energy consumption
cost-saving,
energy-efficient
3
Background
Performance gains due to the algorithmic improvement of Maximum Subarray problem
MIT Computer Science & Artificial Intelligence Laboratory:
Hardware
Advances
The impact of algorithmic improvement for Polynomial Factorization
4
Exponential Time: | |
Polynomial Time: | |
Linear Time: | |
Inefficient
Efficient
Inefficient
Efficient
Classical Notion.
The Massive Data Volume Challenges
the Classical Notion of Efficient Algorithms
Background
Big Data Notion
5
Background
In the Early Stage
Contemporary Internet
The Massive Data Volume Challenges
the Classical Notion of Efficient Algorithms
completed in 3 years using 100 servers!
completed in 10 s with a single server
6
Designing Scalable Algorithms for P Problems
Motivations
Class P
Class NP
Class S
Solvable
in Polynomial Time
Capable
to handle big inputs
(nearly linear or sub-linear)
Verifiable
in Polynomial Time
❓
Focus: Sublinear-Time Algorithm for Random-Walk Probability
Estimation on Large Graphs
7
Outline
Background
2
Contributions and Techniques
4
Problem Definitions
3
Overview
1
Future Work
5
8
Graphs
Social Network
Protein Structure
Trade Network
Transportation Network
a node
an edge
9
Random Walks on Graphs
1
4
3
2
5
6
7
9
10
8
11
12
10
1
4
3
2
5
6
7
9
10
8
11
12
11
PageRank
1
4
3
2
5
6
7
9
10
8
11
12
1
4
3
2
5
6
7
9
10
11
12
8
Sampled!
12
Personalized PageRank (PPR)
1
4
3
2
5
6
7
9
10
8
11
12
Given a
Source Node
PageRank
PPR
13
Applications
Graph Theory and Network Analysis
neural
network
14
Outline
Background
2
Contributions and Techniques
4
Problem Definitions
3
Overview
1
Future Work
5
15
Query Types
Single-Node Random-Walk Probability Computations
Single-Target Random-Walk Probability Computations
Single-Source Random-Walk Probability Computations
Random-Walk Meeting Probability Computations
16
Query Types
Given a
Target Node
Goal:
Single-Node Random-Walk Probability Computations
Single-Target Random-Walk Probability Computations
Single-Source Random-Walk Probability Computations
Random-Walk Meeting Probability Computations
Uniformly Sampled Source Node
17
Query Types
Given a
Target Node
Single-Node Random-Walk Probability Computations
Single-Target Random-Walk Probability Computations
Single-Source Random-Walk Probability Computations
Random-Walk Meeting Probability Computations
18
Query Types
Single-Node Random-Walk Probability Computations
Single-Target Random-Walk Probability Computations
Single-Source Random-Walk Probability Computations
Random-Walk Meeting Probability Computations
19
Query Types
Single-Node Random-Walk Probability Computations
Single-Target Random-Walk Probability Computations
Single-Source Random-Walk Probability Computations
Random-Walk Meeting Probability Computations
Meet!
20
Outline
Background
2
Contributions and Techniques
4
Problem Definitions
3
Overview
1
Future Work
5
21
Contributions Summary
[SIGMOD’20, VLDBJ]
Meeting Prob.
Single-Source
[VLDB’22]
All are first-authored papers or listed alphabetically following the TCS convention.
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
22
Contributions Summary
[SIGMOD’20, VLDBJ]
Meeting Prob.
Single-Source
[VLDB’22]
All are first-authored papers or listed alphabetically following the TCS convention.
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
23
Contributions Summary
Single-Target
[STOC’24, KDD’21, KDD’20]
All are first-authored papers or listed alphabetically following the TCS convention.
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
Node Push
Edge Push
Power Method
Monte Carlo
24
The Power Method [WWW’98]
PageRank/PPR vector
Initial Distribution
Damping Factor
Transition Matrix
25
The Power Method [WWW’98]
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
26
Techniques
Node Push
Edge Push
Power Method
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
Monte Carlo
27
Problem 1: Single-Node PageRank Estimation
Given a
Target Node
Goal:
Uniformly
Sampled!
28
The Monte-Carlo Method [InternetMath ’05]
1
4
3
2
5
6
7
9
10
8
11
12
1
4
3
2
5
6
7
9
10
11
12
8
Sampled!
Sampled!
Sampled!
29
Challenges: Single-Node PageRank Estimation
30
Our Contributions:
Single-Node PageRank on Undirected Graphs
Hanzhi Wang: Revisiting Local PageRank Estimation on Undirected Graphs: Simple and Optimal. [KDD 2024]
KDD’14, WAW’15
Ours, KDD’24
Monte Carlo
Optimal !
Symmetry of Random-Walk Prob. on Undirected Graphs:
31
Challenges: Single-Node PageRank on Directed Graphs
How about directed graphs?
32
Techniques
Node Push
Edge Push
Power Method
Monte Carlo
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
33
Node Push [WAW’07]
34
Push + Monte Carlo [WSDM’16]
Pushing probability mass along in-edges
35
Push + Monte Carlo [WSDM’16]
Push
Balance
36
Our Contributions
Single-Node PageRank Estimation on Directed Graphs
WSDM 2016
SICOMP 2023
STOC 2024 (Ours)
Upper Bound
Upper Bound
Upper Bound
Upper Bound
Lower Bound
Lower Bound
Lower Bound
FOCS 2018
Lower Bound
Hanzhi Wang, Zhewei Wei, Ji-Rong Wen, Mingji Yang, Revisiting Local Computation of PageRank: Simple and Optimal. [STOC 2024]
37
Our Contributions
Upper Bound
Lower Bound
SODA 2026 (Ours)
STOC 2024
Mikkel Thorup, Hanzhi Wang, Zhewei Wei, Mingji Yang, PageRank Centrality in Directed Graphs with Bounded In-Degree. [SODA’26]
38
Techniques
Node Push
Edge Push
Power Method
Monte Carlo
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
39
Problem 2: Single-Target PPR Estimation
Given a
Target Node
40
Open Problem
Upper Bound
Lower Bound
41
Our Contributions
Optimal Algorithm for Single-Target PPR Estimation
Negative Answer to the Open Problem!
Ours, STOC 2024
Optimal under Graph Access Model
Hanzhi Wang, Zhewei Wei, Ji-Rong Wen, Mingji Yang, Revisiting Local Computation of PageRank: Simple and Optimal. [STOC 2024]
WAW 2007
Upper
Bound
Lower
Bound
42
Hard Instances
43
Techniques
Node Push
Edge Push
Power Method
Monte Carlo
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
44
Our Contributions
45
Our Contributions
Optimal Algorithm for Single-Target PPR Estimation
Hanzhi Wang, Zhewei Wei et al., Personalized PageRank to a Target Node, Revisited. [KDD 2020]
Positive Answer to the Open Problem!
WAW 2007
Ours, KDD 2020
Optimal under Degree-Sorted Model
Upper
Bound
Lower
Bound
46
Techniques
Node Push
Edge Push
Power Method
Monte Carlo
Single-Target
[STOC’24, KDD’21, KDD’20]
Single-Node
[SODA’26, STOC’24, KDD’24, VLDB’23]
47
Outline
Background
2
Contributions and Techniques
4
Problem Definitions
3
Overview
1
Future Work
5
48
Future Work
Single-Pair Random-Walk Probability Estimation
Upper Bound
❓
Lower Bound
Given a Source Node
Goal:
Given a
Target Node
Solved
49
Future Work
Dynamic Random-Walk Probability Estimation
add an edge
❌
Random-Walk Probability after Update:
no easy-to-apply error guarantees
❓
50
Future Work
v.s.
51
Future Work
Scalable
Algorithms
Dynamic
Algorithms
Practical
Algorithms
52
Thanks!
53