G e . - T R - I
e § e §

Welcome to Lecture 19:

S/ e
e

1) Open a Code Editor

2) Use Iclicker for attendance

e AR e i

A

LA

Snap! L

m."x!-m-"x—m."ﬁ

SE A e e S e G
Announcements

l

' ® OH gqueue is still down - University-level issue

|
w
| |
| |
I 1
w

e Victoria’s OH today will be online

i Topics

' e Encapsulation

N e Inheritance

4

|

Ji e Polymorphism '
:

i I

\

N

Im.'

|
i
|
|
:
i
|
|

1

o . I O e S e T R G
P ~e ~e

\

M o OOP is aprogramming paradigm with its own vocabulary:

' o Class: A template for defining entities (called objects.)

}‘ o Object: An entity defined by (an instance of) a particular class.
I m Every object has a type, called its class.

‘ o To create new types of data, we implement new classes.

N

e Classes are an essential part organizing code in Object Oriented
Programming (OOP)

. T Y = A T =

4
4
|

4
|
|
B

LG/ R TS o R/ S - R 2 e S/
e § e §

name = input("What is your name: ")

print (name)

< print (type (name)) >

Name :

‘.MI

\

Name: Lisa
Lis

(:«<class 'str'E::>

I S TS
e e

W .

. T e SR . e N T T e

e Every object has a type, called its class.

i
I‘
|
l
|
I
I‘
]

>>> some_list = [
>>> type(some_list)
<class| "list'>

>>> some_dict = {
>>> type(some_dict)
<class 'dict'>

e These are built-in classes, we'll make our own!

. e

\
%
%

A A e R e S e N e O
N ge==" R

i 4

M ¢ Modular Programming: Separating the functionality of a program into ‘

' independent chunks (modules.) l‘
e Whatisit?

\ o It's a way of writing computer programs by breaking them into '

i

" smaller, separate parts.

I e Whydoit?

i o It makes the program easier to understand, manage, and fix. [
:

o Each part (or module) can be worked on independently. ‘

e Class — CS10 (Template)

e Object— CS10 Summer 2024

Cs10

i

‘ Instructor
- Delivers Lectures

- Hosts OH

i - Writes exams

TAs

- Teach section
- Manage website
- Manage autograders

Tutors
- Host OH
- Grade final projects
- Host project parties

s S e i« S s P N o e S
N ge==" R

e Modular Programming: Separating the functionality of a program into
independent chunks (modules.) ‘

e Example of a modular procedure:

CS10
" o Modules communicate)

i

o Abstraction barriers! |

Instructor TAs Tutors
- Host OH [
- Delivers Lectures - Teach section - Grade final projects
i

- Hosts OH - Manage website - Host project parties

- Writes exams - Manage autograders
m."ﬁ

\

S e e e S e e O e SO
e

e The “dunder init” (double-under)

' method is the constructor of the class dog
class Dog.
def __init__(self, my_name):
\ e When we call dogl = dog(“Costa”), Self.name = My_name
" the parameter self is bound to the
I newly created dog object.
dogl = dog("Costa")
‘ e The constructor binds the value print(f"the dog is named {dogl.name}")
“Costa” to the object’s name

attribute.
=

1
Im."x!-m."x-m."A

o . . O O R, - S R, N/
e

N ¢ We could also rename Costa RAEEE dog:

using Dot notation o
J def __init__(self, my_name):

self.name = my_name

\
i

\

dogl = dog("Costa")

print(dogl.name)

:
i dogl.name = "Wonder Dog"
N
S
)

o . . O O R, - S R, N/
e g

class dog:

e Assigned in the suite of the class, species = "canine"
outside any method definitions.

N

def __init__(self, my_name):
self.name = my_name

\
i

dogl = dog("Wonder Dog")

\

print(dogl.name)
print(dogl.species)

‘ dog2 = dog("Glen")
print(dogl.name)
s

print(dogl.species)

vars() function to print all the attributes of an Object

class dog:
species = "canine"

‘ def __init__(self, my_name, breed):

self.name = my_name
self.breed = breed

dogl = dog("Wonder Dog", "Springer Spaniel")

priogl))

1alle .

=S =9 \

def __init__(self, my_name):
e Include a special first self.name = my_name
parameter self,

def barreeting):
e implicitly bound to print(™Was#Woof, {self.name} says {greeting}")

the object on which the
‘ method is invoked, dogl = dog("Wonder Dog")
thanks to dot notation. dogl.bark("Give me a treat")

dog2 = dog("Glen")

dog2.bark("Get off my lawn!")

=S =9)

L R T e/ g TR S e
e § e, {

‘ Advanced OOP concepts (you will recognize some of this...) ¥
i Encapsulation: Bundling data and methods into a single unit (class) and ‘
i restricting access to certain parts of the object. l

‘ Inheritance: Creating new classes from existing classes, inheriting attributes and

methods.
Polymorphism:
)

e A base class (parent class) defines a common interface (methods) which can
I be overridden by its subclasses.
‘ e Subclasses modify methods [
e But we can call methods on subclasses with the same name as defined in the ‘
S Parent class ‘

lm-"x P . e R Y e T e

Encapsulation

Encapsulation introduces the idea
of bundling data and methods
together into classes (from OOP
Day 1)

Restricting access to protect the
integrity of the data

Using getter and setter methods,,
you can control how an attribute
is accessed and modified.

o This helps maintain the
integrity and consistency of
the data.

(self, name, team):

self.__name = name
self.__ team = team

(self):
self.___name

(self, name):

isinstance(name, str):

self.__name = name

print("1I 1d Na)
(self):

self._team

(self, team):
isinstance(team, str):

self._team = team

/

A e

(celf. name, team):

EncaPSUIation self.__name = name

self.__ team = team

The double underscore makes an

attribute private (self):

self.__ _name

We can no longer access/modify via dot

notation (self, name):
1f isinstance(name, str):
:)] self. name = name
print("1I 1d Na)
We create get and set methods to
access and modify data T
o ‘“getters” and “setters” return self.__team
We can also have private methods (not det (seif team):
covered tOday) 1 isinstance(team, str):

self._ team = team

/s e

v———-

\
%

/

| S IS SR/ S S ' C s
e § e §

Using getters and setters, you
can control how an attribute
is accessed and modified.

o This helps maintain the
integrity and consistency
of the data.

You change access and
modify data through
methods,

o you cannot directly
access/modify data
directly through the
attributes

(Demo this)

playerl = Player("Lebron", "Lakers")
print(f"Player's Name and Team: {playerl.get_na
and {playeril.get_team()}")

#0utput: P T L L
#Change team to the Warrtiors

playerl.set_team("Warriors")

print(f"Player's Team: {playerl.get_team()}")
#output: Player's Team: Warrtiors

playerl.__team = "Lakers"
print(f"Player's Team: {playerl.get_team()}")
#output: Player's Team: Warriors

N/ D T 7% e R/ N R 7S I e
e § e, {

Encapsulation Benefits /

i Data Integrity: Prevents external code from directly altering an object's state ‘
i in a way that could leave it inconsistent or invalid. l‘

Security: Sensitive data is protected from unauthorized access.

Abstraction: Users of the object need not worry about the internal '
" implementation details. They interact with the object through its public i
interface (methods), promoting a clean separation between how an object is

used and how it is implemented.

i Question: When might this apply?

N

Pimﬁmﬁ
]
\

/ ‘

Task 1: Code a Student Class

e Code a student class with:
o 2 private attributes:
m Name
m GPA
o Getters and Setters
m get _name, set_name
m get GPA, set GPA

http://www.youtube.com/watch?v=zVHWhLme2NQ

= N - S Y |25 Basketball(Player): L/

def __int__(self, name, team, points):

I . .__init Ak
Inheritance: alows a new class to super (). init_. [nama, ‘team)
.]] o self.points = points
inherit attributes and methods from an existing
class. def get_points(self):
N

return self.points

' def set_points(self):

if isinstance(points, int):
Parent Class self.points = points
else:
cl Pla :
\ Z:i izii (self, name, team): print(“Need points as int")
S e ' Child Classes

self.__name = name
self. _team = team

class Footbhall(Player):
def __int__(self, name, team, touchdowns):
def get_name(self): super().__init__(name, team)
EGEUERNSCLE o ftalle self.touchdowns = touchdowns

\

def set_name(self, name):

if isinstance(name, str): def get_touchdowns(self):
self.__name = name return self.touchdowns
else:

int(“Invalid Name" .
RELCLARVRLLL Home™) def set_points(self):

if isinstance(touchdowns, int):
self.touchdowns = touchdowns
else:

= >\ — oy print(“Need touchdowns as int")

|
a

L R T e/ g TR S e
e § e §

Inheritance: Parent Class (Base Class or Superclass): [

Definition: The class whose attributes and methods are inherited. ‘

' Purpose: Encapsulates common attributes and methods that can be shared by multiple l‘

‘ child classes.

class Player:
def __init__ (self, name, team):
self.__name name
self.__team = team

def get_name(self):
return self.__name

def set_name(self, name):
if isinstance(name, str):

self. name = name
else: l

print(“Invalid Name")

P . e R Y e T e

= u

SRR /AR ¢ S s /A ¢ SRS e
‘ Inheritance: Child Class and super() function

e Child Class inherits from the parent class and can have additional attributes and

. methods or override the parent class's methods.

' e super() function used to call the parent class's methods and constructors from the
child class.

\ class Basketball(Player): class Football(Player):

" def int__(self, name, team, points): def int (self, name, team, touchdowns): |
__init__(name, team) _init__(name, team)
setr.points = points se(T. touchdowns = touchdowns

def get_points(self): def get_touchdowns(self):
return self.points return self.touchdowns

def set_points(self): def set_points(self):
if isinstance(points, int): if isinstance(touchdowns, int):

self.points = points self.touchdowns = touchdowns
else: else:

print("NQEd pOintS as :Lnt“) nrintl "NMaand +*Anrchdmvuime me Thadst)

v ___— / -\

AR -

Why not just use Classes and Objects?

With Inheritance

(self, make, model):
self.make = make
self.model = model

(self):

(self, make, model, num_doors):
super().__init__ (make, model)
self.num_doors = num_doors

)&
(self, make, model, cargo_capacity):
super().__init__(make, model)

self.cargo_capacity = cargo_capacity

Benefit: Common functionality is centralized in the Vehicle
class, and specific attributes or methods can be added in the
Car and Truck subclasses without duplicating code.

(self, make, model):
self.make = make
self.model = model

(self):
print("Engine started"

(self, make, model):
self.make = make

self.model = model

(self):
print("Engine started")

Issue: Code duplication and difficulty in managing changes to
common functionality.

a S SR« S " ——
‘ Inheritance: Why Use? /

N

N

/

multiple child classes, reducing redundancy and promoting DRY (Don't Repeat

Code Reuse: Common functionality defined in the parent class can be reused in ‘
Yourself) principles. l

Extensibility: Existing classes can be extended to add new features without '
modifying the original class, allowing for more flexible and scalable code.

4

Polymorphism: Enables objects of different classes to be treated as objects of a ‘

\

lm-"x P . e R Y e T e

common superclass, allowing for dynamic method calls and more flexible code.

. e e e S e O S e O T
When might this apply? /

Hierarchical Relationships: ‘

e Why: Models natural hierarchies where subtypes share common behavior but also have

e Example: Animal kingdom, company organizational structure. l‘
specific behaviors.
Extending Functionality:

!

" e Example: Creating specialized versions of general-purpose classes. ‘
I e Why: Allows extension of existing classes without modifying them, preserving the original
!

functionality.
Promoting Reusability: 4

e Example: GUI components like buttons, text fields, etc., which share common behaviors. ‘
e Why: Reduces redundancy by allowing shared behavior to be defined once and reused. l‘

. T e SR . e N T T e

Task 2: Code 2 Child Classes for Student Class

Child Classes should:

® Inherent attributes and methods from Parent class
o Pay attention to super() function

e Child class for 2 seperate levels of School (your choice)
o Elementary School
o High School
o College
o Grad School

e Have unique attributes:
O age
o school

http://www.youtube.com/watch?v=zVHWhLme2NQ

= u

‘ Polymorphism

Definition: Polymorphism means "many
forms"

N

S D T S e R
e §

class Player:
def

def get_name(self):

def get_team(self):

ge==" R
__init__(self, name, team):
self.__name = name
self.__team = team

4
]
|

return self.__name

return self.__team

def player_introduction(self):

raise NotImplementedError("subcla@plement abstract method")

class Basketball(Player):
def

e allows objects of different classes to
be treated as objects of a common
superclass.

e Itisimplemented through method

__init__(self, name, team, points):
super().__init__(name, team)
self.points = points

overriding and interfaces.

Q player_introduction(self):
print(f"{self.get_name()} plays

mget_team()} in the NBA")

fl
bl

class Football(Player):
def

@ayer#int roduction(self):
print(f“{self.get_name()} plays for _team()} in the NFL")

f1;
bl.

__init__(self, name, team, touchdowns):
super().__init__(name, team)
self.touchdowns = touchdowns

Football("Brock", "49ers", 7)

Basketball("Steph", "Warriors", 1000)
player_introduction() # Add parentheses to call th
player_introduction()

= u

class Player:
def __init__(self, name, team):

‘ POIVmOrphism self.__name = name

self.__team = team

def get_name(self):

Definition: Polymorphism means "many return self._nane

L R T e/ g TR S e
W forms"

def get_team(self):
return self.__team

e Abase class (parent class)

def player_introduction(self)
deﬂnes a Common |nterface <rasseyNotImplementedError("subcla@plement abstract method")
\ (methOdS) Wh|Ch can be class Basketball(Player): :
. . def __init__(self, name, team, points):

" overridden by its subclasses. super()._init__(name, tean) |

self.points = points
e Subclasses modify methods G Parer_introdictiontself):

print(f"{self.get_name()} plays fo get_team()} in the NBA")

e But we can call methods on iaes EikbaliiFaveri:

i SUbC|aSSGS Wlth the Same name def ”'Lnitﬁ(stlelf, name, team, touchdowns): ‘
iil

super().__init__(name, team)

as defined in the Parent class SELIA RIS o CilichmGon:
@player#introduction(self): g
print(f"{self.get_name()} plays for _team()} in the NFL")

f1 = Football("Brock", "49ers", 7)
bl = Basketball("Steph", "Warriors", 1000)
fl.player_introduction() # Add parentheses to call the method

bi.player_introduction() id parentheses to call the method
‘-m-"x—"."ﬁ

AR -

Polymorphism: Method Overriding

Definition: Allows a subclass to
provide a specific implementation it G L
self.title = title

of a method that is already defined D —
in its superclass.

Purpose: Enables the subclass to m.i_s;:(:;sl(\eliz;plementedError(”f;f.sz:r_sgg nust implement abstrac
tailor the inherited method to fit
its needs. class () :

def (self, title, creator, duration):

super().__init__ (title, creator)
self.duration = duration

def (self):

DT Aavza2 Ar puo N g o de T A n~ ‘D I s
recurn [‘\‘ [ay .,-H‘:j song St ; » C1ELE f 0) y { S Ul

S\ S\

AR -

Polymorphism: Method Overriding

Common Interface:; Media class
with an abstract play method.

(self, title, creator):
self.title = title

Child Classes: Song and Podcast self.creator = creator
implement the play method. ot T

raise NotImplementedError("Subclass must implement abstract

Polymorphic Behavior: Treating
different media items uniformly
through the play method. class () s

(self, title, creator, duration):
super().__init_ (title, creator)
self.duration = duration

(@)

lef (self):
return f"Playing song '{self.title}' by {self.cre:

=S %3 e A e

Task 3 Add a Polymorphic Method: Share_info

® Add an abstract method “Share_info” ‘
in the Parent Class

® In each Child Class, implement the
method that prints the name of the
student and what level of school they
are in

http://www.youtube.com/watch?v=zVHWhLme2NQ

e
Why Polymorphism?

Flexibility and Reusability:

4
. ‘
' e Benefit: Promotes code reusability by allowing the same interface to interact with ‘
‘ objects of different types.

Maintainability: '
" e Benefit: Enhances maintainability by centralizing method interfaces while allowing |
specialized implementations.

Extensibility:

seamlessly with existing code.

\ 4
| e Benefit: Simplifies the extension of code by enabling new classes to integrate ‘
i

l = TN L = e R G Y e

A B e

Putting It All Together

Here's a combined example
demonstrating encapsulation,
inheritance, and polymorphism:

f Po

vehicles = [Car("Toyota", "Corolla"), Motorcycle("Hond

(self, make, model):
self.make = make
self._model = model # prot ed at

def (self):
NotImplementedError("Sub

def (self):
1 self._model

(DEE
(self, make, model):
super().__init__ (make, model)

(self):

():

(self, make, model):
super().__init__(make, model)
(self):

engine

orphism in action

vehicle in vehicles:

TRy 2

/

' e A/ D - o SO~ ¥ S S/ o SR 7 <% e
e § e, {

4

e Encapsulation: Bundling data and methods into a single unit (class) and restricting ‘
i access to certain parts of the object. l‘
o

‘ Summary

Inheritance: Creating new classes from existing classes, inheriting attributes and
methods.

\ e Polymorphism: Treating objects of different classes that share a common

’ superclass in a uniform way.

I These concepts help in organizing code more efficiently, promoting reuse, and
‘ enhancing flexibility and maintainability.

N

Im-'

