
Welcome to Lecture 19:
Intro to OOP II

1) Open a Code Editor

2) Use Iclicker for attendance

Announcements

● Victoria’s OH today will be online

● OH queue is still down - University-level issue

Topics

● Encapsulation

● Inheritance

● Polymorphism

REVIEW: OBJECT-ORIENTED PROGRAMMING (OOP)

● OOP is a programming paradigm with its own vocabulary:

○ Class: A template for defining entities (called objects.)

○ Object: An entity defined by (an instance of) a particular class.

■ Every object has a type, called its class.

○ To create new types of data, we implement new classes.

● Classes are an essential part organizing code in Object Oriented
Programming (OOP)

4

Name: Lisa
Lisa
<class 'str'>

Name:

name = input("What is your name: ")

print(name)

print(type(name))

● Every object has a type, called its class.

● These are built-in classes, we’ll make our own!

6

OBJECT-ORIENTED PROGRAMMING (OOP)

● Modular Programming: Separating the functionality of a program into
independent chunks (modules.)

● What is it?

○ It's a way of writing computer programs by breaking them into
smaller, separate parts.

● Why do it?

○ It makes the program easier to understand, manage, and fix.

○ Each part (or module) can be worked on independently.

7

OBJECT-ORIENTED PROGRAMMING (OOP)

● Class → CS10 (Template)

● Object→ CS10 Summer 2024

8

OBJECT-ORIENTED PROGRAMMING (OOP)

● Modular Programming: Separating the functionality of a program into
independent chunks (modules.)

● Example of a modular procedure:

○ Modules communicate

○ Abstraction barriers!

9

Constructors and Instance Attributes

● The “dunder init” (double-under)
method is the constructor of the
class Dog.

1
0

● When we call dog1 = dog(“Costa”),
the parameter self is bound to the
newly created dog object.

● The constructor binds the value
“Costa” to the object’s name
attribute.

DOT NOTATION

● We could also rename Costa
using Dot notation

1
1

CLASS ATTRIBUTES

1
2

● Assigned in the suite of the class,
outside any method definitions.

vars() function to print all the attributes of an Object

INSTANCE METHODS

1
4

● Include a special first
parameter self,

● implicitly bound to
the object on which the
method is invoked,
thanks to dot notation.

Advanced OOP concepts (you will recognize some of this…)

Encapsulation: Bundling data and methods into a single unit (class) and
restricting access to certain parts of the object.

Inheritance: Creating new classes from existing classes, inheriting attributes and
methods.

Polymorphism:

● A base class (parent class) defines a common interface (methods) which can
be overridden by its subclasses.

● Subclasses modify methods

● But we can call methods on subclasses with the same name as defined in the
Parent class

Encapsulation
● Encapsulation introduces the idea

of bundling data and methods
together into classes (from OOP
Day 1)

● Restricting access to protect the
integrity of the data

● Using getter and setter methods,,
you can control how an attribute
is accessed and modified.

○ This helps maintain the
integrity and consistency of
the data.

Encapsulation
● The double underscore makes an

attribute private

● We can no longer access/modify via dot
notation

○ Return {self.name}

○ self.name = “Rothman”

● We create get and set methods to
access and modify data

○ “getters” and “setters”

● We can also have private methods (not
covered today)

● Using getters and setters, you
can control how an attribute
is accessed and modified.

○ This helps maintain the
integrity and consistency
of the data.

● You change access and
modify data through
methods,

○ you cannot directly
access/modify data
directly through the
attributes

● (Demo this)

Encapsulation Benefits

Data Integrity: Prevents external code from directly altering an object's state
in a way that could leave it inconsistent or invalid.

Security: Sensitive data is protected from unauthorized access.

Abstraction: Users of the object need not worry about the internal
implementation details. They interact with the object through its public
interface (methods), promoting a clean separation between how an object is
used and how it is implemented.

Question: When might this apply?

Task 1: Code a Student Class

● Code a student class with:

○ 2 private attributes:

■ Name

■ GPA

○ Getters and Setters

■ get_name, set_name

■ get_GPA, set_GPA

http://www.youtube.com/watch?v=zVHWhLme2NQ

Inheritance: allows a new class to
inherit attributes and methods from an existing
class.

Parent Class

Child Classes

Inheritance: Parent Class (Base Class or Superclass):

Definition: The class whose attributes and methods are inherited.

Purpose: Encapsulates common attributes and methods that can be shared by multiple
child classes.

Inheritance: Child Class and super() function

● Child Class inherits from the parent class and can have additional attributes and
methods or override the parent class's methods.

● super() function used to call the parent class's methods and constructors from the
child class.

Why not just use Classes and Objects?

With Inheritance Without Inheritance

Issue: Code duplication and difficulty in managing changes to
common functionality.

Benefit: Common functionality is centralized in the Vehicle
class, and specific attributes or methods can be added in the
Car and Truck subclasses without duplicating code.

Inheritance: Why Use?

● Code Reuse: Common functionality defined in the parent class can be reused in
multiple child classes, reducing redundancy and promoting DRY (Don't Repeat
Yourself) principles.

● Extensibility: Existing classes can be extended to add new features without
modifying the original class, allowing for more flexible and scalable code.

● Polymorphism: Enables objects of different classes to be treated as objects of a
common superclass, allowing for dynamic method calls and more flexible code.

When might this apply?

Hierarchical Relationships:

● Example: Animal kingdom, company organizational structure.
● Why: Models natural hierarchies where subtypes share common behavior but also have

specific behaviors.

Extending Functionality:

● Example: Creating specialized versions of general-purpose classes.
● Why: Allows extension of existing classes without modifying them, preserving the original

functionality.

Promoting Reusability:

● Example: GUI components like buttons, text fields, etc., which share common behaviors.
● Why: Reduces redundancy by allowing shared behavior to be defined once and reused.

Task 2: Code 2 Child Classes for Student Class

Child Classes should:

● Inherent attributes and methods from Parent class
○ Pay attention to super() function

● Child class for 2 seperate levels of School (your choice)
○ Elementary School
○ High School
○ College
○ Grad School

● Have unique attributes:
○ age
○ school

http://www.youtube.com/watch?v=zVHWhLme2NQ

Polymorphism

Definition: Polymorphism means "many
forms"

● allows objects of different classes to
be treated as objects of a common
superclass.

● It is implemented through method
overriding and interfaces.

Polymorphism

Definition: Polymorphism means "many
forms"

● A base class (parent class)
defines a common interface
(methods) which can be
overridden by its subclasses.

● Subclasses modify methods

● But we can call methods on
subclasses with the same name
as defined in the Parent class

Polymorphism: Method Overriding

Definition: Allows a subclass to
provide a specific implementation
of a method that is already defined
in its superclass.

Purpose: Enables the subclass to
tailor the inherited method to fit
its needs.

Polymorphism: Method Overriding
Common Interface: Media class
with an abstract play method.

Child Classes: Song and Podcast
implement the play method.

Polymorphic Behavior: Treating
different media items uniformly
through the play method.

Task 3 Add a Polymorphic Method: Share_info

● Add an abstract method “Share_info”

in the Parent Class

● In each Child Class, implement the

method that prints the name of the

student and what level of school they

are in

http://www.youtube.com/watch?v=zVHWhLme2NQ

Why Polymorphism?

Flexibility and Reusability:

● Benefit: Promotes code reusability by allowing the same interface to interact with
objects of different types.

Maintainability:

● Benefit: Enhances maintainability by centralizing method interfaces while allowing
specialized implementations.

Extensibility:

● Benefit: Simplifies the extension of code by enabling new classes to integrate
seamlessly with existing code.

Putting It All Together

Here's a combined example

demonstrating encapsulation,

inheritance, and polymorphism:

Summary

● Encapsulation: Bundling data and methods into a single unit (class) and restricting
access to certain parts of the object.

● Inheritance: Creating new classes from existing classes, inheriting attributes and
methods.

● Polymorphism: Treating objects of different classes that share a common
superclass in a uniform way.

These concepts help in organizing code more efficiently, promoting reuse, and
enhancing flexibility and maintainability.

