1 of 23

“Zwischen Tool und Forschungswerkzeug”. Generative KI in den (digitalen) Geisteswissenschaften�

Zwischen Codices und Codes

Innovative Perspektiven in der Mittelalter- �und Frühneuzeitforschung. �Ringvorlesung des IZMF. 21.10.2024

Christopher Pollin

Digital Humanities Craft OG�www.dhcraft.org �Institut für Digitale Geisteswissenschaften,�https://digital-humanities.uni-graz.at

Aerosol paint illustration of a golden robot working with books, stacks of medieval documents in front, full body shot, white background, Ultra HD

2 of 23

“Zwischen Tool und Forschungswerkzeug”. Generative KI in den (digitalen) Geisteswissenschaften

Generative KI

“A toy, until it isn’t”

Grundlagen LLM und Prompt Engineering

“Tools on demand”

o1-preview

“The Intelligence Age” (!?)

Aerosol paint illustration of a golden robot working with books, stacks of medieval documents in front, full body shot, white background, Ultra HD

3 of 23

Erstellung eines Videos mit Sora��Analyse des Videos mit GPT-4 und �Erstellung eines Storyboards für eine „Naturdokumentation“.��Klonen der eigenen Stimme��Erstellung eines Films, in dem eine Stimme das Geschehen beschreibt��Übersetzung in andere Sprachen

Generative KI … in 03:26

4 of 23

OpenAI’s Advanced Voice Mode

https://www.youtube.com/shorts/opGN0XnpsDA

Late nights, dino delights

OpenAI. Sora. https://openai.com/sora

Matthew Berman. OpenAI's "World Simulator" SHOCKS The Entire Industry | Simulation Theory Proven?!. https://youtu.be/BH9FU7Gd6v8?si=mR1bUre_FVLaQUA-

AI Explained. Sora - Full Analysis (with new details). https://youtu.be/nYTRFKGR9wQ?si=V3QTXC9gp2Z3o2yE

5 of 23

“A toy, until it isn’t”

Ethan Mollick. Gradually, then Suddenly: Upon the Threshold. https://www.oneusefulthing.org/p/gradually-then-suddenly-upon-the

Hyper realistic diptych of transforming objects with white background, child's hand holding building blocks. adult hand writing in a planner. Warm to cool color shift. Depth-of-field blur techmecha-cat in the style of Tekkonkinkreet anime --style raw --v 6.1 --ar 16:9 --q 2

6 of 23

Tools

7 of 23

NotebookLM ist ein brauchbares Tool!

8 of 23

“Large Language Models (LLM) are �like having a Zip-File of the internet”[nur nicht mehr vollständig entpackbar]

Andrej Karpathy. [1hr Talk] Intro to Large Language Models. https://www.youtube.com/watch?v=zjkBMFhNj_g&list=WL&index=16

  • Neuronales Netzwerk
  • Transformer-Architektur
  • Pre-Training
  • Fine-Tuning
  • Reinforcement learning from human feedback

Sureal painting of a hyper realistic and sureal gigantic yellow folder with zipper, like a desktop icon, ultra detailed, salvador dali desert background, landscape, by Frederic Edwin Church –v 6.1

Skalierung

9 of 23

Embeddings

Hochdimensionale Vektordarstellungen von Token

10 of 23

The King doth wake tonight and takes his rouse

“Modern English”

The King doth wake tonight and takes his rouse

The King wakes up tonight and begins his celebration

The King wakes up tonight and begins his celebration

“Shakespearean English”

11 of 23

“Let’s think step by step!

�“Prompting is weird. Prompting matters.

Ethan Mollick. Captain's log: the irreducible weirdness of prompting AIs. https://www.oneusefulthing.org/p/captains-log-the-irreducible-weirdness

Prompt Engineering ist die Kunst und Wissenschaft, präzise und effektive Eingabeaufforderungen (Prompts) für KI-Systeme wie LLMs zu formulieren, um gewünschte Ausgaben oder Verhaltensweisen zu erzielen.

�Chain of Thought = �“Simulation eines Pseudo-Reasonings”

12 of 23

Daten-

erfassung

Daten-

transformation

Daten-�modellierung

Daten-visualisierung

Pollin, C. (2024). Workshopreihe “Angewandte Generative KI in den (digitalen) Geisteswissenschaften” (v1.1.0). Zenodo. https://doi.org/10.5281/zenodo.10647754

13 of 23

95% o1-preview mit ein bisschen Prompting: eine WebApp einer interaktiven Treemap aller Objekte in “Stuben” von Schlössern (https://realonline.imareal.sbg.ac.at); SPARQL Query als JSON Result.

14 of 23

CROWN.

Untersuchungen zu Materialität, Technologie und Erhaltungszustand der Wiener Reichskrone.

  • TMS Excel Export von 8 Excel-Dateien
  • 532 Datenfelder
  • 2833 Objekte unterschiedlicher Art (Objekte, Vergleichsobjekte, Zusatzmaterial [Fotos, Textdokumente, Gemälde, ...])

15 of 23

Sunburst aller Fassungstypen und aller ihrer Datenfelder + Frequenz

Aufstellung aller Objekte und der Anzahl der Granalien (“Goldkügelchen-Ornamente”).

~95% GPT-4o und Claude 3.5 Sonnet generiertes interaktives Daten-Dashboard �(Excel, Plotly Dash Python)

https://github.com/chpollin/crown-dashboard

https://crown-dashboard-47d38d2d4a81.herokuapp.com/sunburst

16 of 23

GPT o1-preview Moments

Learning to Reason with LLMs. https://openai.com/index/learning-to-reason-with-llms�OpenAI Releases GPT Strawberry 🍓 Intelligence Explosion!. https://www.youtube.com/watch?v=NbzdCLkFFSk Something New: On OpenAI's "Strawberry" and Reasoning. https://www.oneusefulthing.org/p/something-new-on-openais-strawberryExplaining OpenAI's o1 Reasoning Models. https://www.youtube.com/watch?v=jrA47yocyV0Scaling: The State of Play in AI. https://www.oneusefulthing.org/p/scaling-the-state-of-play-in-ai

Can ChatGPT o1-preview Solve PhD-level Physics Textbook Problems?. https://www.youtube.com/watch?v=a8QvnIAGjPA

ChatGPT o1 preview + mini Wrote My PhD Code in 1 Hour*—What Took Me ~1 Year. https://youtu.be/M9YOO7N5jF8?si=-lYWaQ1LvgmzHnHQ

OpenAI o1-preview answer unformalized physics questions. https://www.youtube.com/watch?v=wAnkM10FByY&list=WL&index=32

17 of 23

„Bauen Sie Ihre �eigenen Werkzeuge“

18 of 23

Skalierung

ARC Prize is a $1,000,000+ public competition to beat and open source a solution to the ARC-AGI benchmark. https://arcprize.org.

I Won't Be AGI, Until It Can At Least Do This (plus 6 key ways LLMs are being upgraded). https://youtu.be/PeSNEXKxarU?si=pqkqcbrAHa58W1jg.

Francois Chollet - LLMs won’t lead to AGI - $1,000,000 Prize to find true solution. https://youtu.be/UakqL6Pj9xo?si=f8f_GKJX1nOQUmoW.

A new initiative for developing third-party model evaluations. Anthropic. https://www.anthropic.com/news/a-new-initiative-for-developing-third-party-model-evaluations?s=09

Dr. Chollet. General Intelligence: Define it, measure it, build it. https://youtu.be/nL9jEy99Nh0?si=lY_FfS4aYRY6b2kX

19 of 23

“Let’s think step by step” skaliert!

LLMs Still Can't Plan; Can LRMs? A Preliminary Evaluation of OpenAI's o1 on PlanBench. https://www.arxiv.org/abs/2409.13373

OpenAI: ‘We Just Reached Human-level Reasoning’. https://youtu.be/qaJJh8oTQtc?si=Cn8x30DxESnMDfT4

Sam Altmann. The Intelligence Age. https://ia.samaltman.com. OpenAI

Leopold Aschenbrenner. SITUATIONAL AWARENESS. The Decade Ahead. https://situational-awareness.ai (OpenAI)

Dario Amodei. Machines of Loving Grace. https://darioamodei.com/machines-of-loving-grace. Antrophic

20 of 23

Fazit

Vielfalt der Werkzeuge und Arbeitsmethoden �(z.B. Prompt Engineering, Anforderungsanalyse, Prozessmodellierung) ist entscheidend.

Expert in the Loop”: Domänenwissen und Wissen über Tools und Handhabe.

Digital Humanities optimale Ausbildung für Angewandte Generative KI (?!)

“o1-Momente” ersetzen “GPT-4-Momente”.

Tools on Demand

The Intelligence Age” (!?)

Meinung: Modelle werden im kommenden Jahr deutlich besser sein!

Skalierung im Pretraining: “Weltwissen”� Skalierung in der Inferenz “(Pseudo-)Reasoning”� Tools, UI, Workflows, Prompt Engineering, …

21 of 23

Anhang

22 of 23

Big Context Window

Hatten Sie schon einmal ALLE Paper zu einem Thema gleichzeitig im Context Window?

Gemini 1.5 Experimental 0827 mit einem 2 M Token Context Window (https://ai.google.dev/aistudio)

23 of 23

PRISM -

Parameterized

Recursive

Insight

Synthesis

Matrix�(by Christopher Pollin)

# PRISM: Parameterized Recursive Insight Synthesis Matrix

You're an AI using the PRISM problem-solving method. For each task:

1. **Analyze**

- Identify objectives, constraints, resources

- Restate problem concisely

- Consider potential sub-problems for recursive analysis

2. **Parameterize**

- Set: Thinking Type, Focus Area, Depth, Timeframe

- Justify choices briefly

- Adjust parameters for sub-problems as needed

3. **Matrix Creation**

| Step | Description | Considerations | Outcomes | Branches | Rating | Convergence |

|------|-------------|----------------|----------|----------|--------|-------------|

| 1 | | | | T1.1 | [1-5] | |

| | | | | T1.2 | [1-5] | |

| | | | | T1.3 | [1-5] | |

| ... | | | | ... | ... | |

- Break problem into steps, identifying recursive sub-problems

- For each: describe, consider, predict, branch (2-3 thoughts), rate, converge

- Rating scale: 1 (Poor) to 5 (Excellent), based on relevance, feasibility, and potential impact

- For sub-problems, create nested matrices as needed

4. **Synthesize**

- Integrate insights from all levels of analysis

- Emphasize highest-rated thoughts and their interconnections

- Recommend solutions, addressing both main problem and sub-problems

- Identify uncertainties and potential areas for further exploration

Guidelines: Clear, concise, use Markdown, adapt to task complexity, explain if asked.

Start responses with: "Applying PRISM Method to [task]..."

Interactive Commands:

1. `/deepdive [topic]`: Initiate a Q&A session on [topic] with follow-up questions

2. `/compress`: Summarize current analysis in 3 key points

3. `/iterate`: Perform another cycle of analysis, incorporating new insights