
Suggested line of text (optional):

WE START WITH YES.

December 18, 2023

Analyzing I/O behavior of
HEP workflows with
Darshan

erhtjhtyhy

HEP-CCE All-hands meeting

Doug Benjamin (ANL), Patrick Gartung (FNAL), Ken
Herner (FNAL), Shane Snyder (ANL), Rui Wang

(ANL)

❖ Darshan is a lightweight I/O characterization tool that captures concise views
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available
➢ Deployed (and commonly enabled by default) at many HPC facilities around the world

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

2

How does Darshan work?

3

Two primary components:
1. Darshan runtime library

○ Instrumentation modules: lightweight
wrappers (interposed at link or run time)
intercept application I/O calls and record
statistics about file accesses
‒ File records are stored in bounded, compact

memory on each process

○ Core library: aggregate statistics when the
application exits and generate a log file
‒ Collect, filter, compress records and write a

single summary file for the job Figure courtesy Jakob Luettgau (UTK)

How does Darshan work?

4

Two primary components:
2. Darshan log analysis tools

○ Tools and interfaces to inspect and interpret
log data
‒ PyDarshan command line utilities like the

new job summary tool
‒ Python APIs for usage in custom tools,

Jupyter notebooks, etc.
‒ Legacy C-based tools/library

Figure courtesy Jakob Luettgau (UTK)

Darshan enhancements from HEP-CCE

5

Darshan enhancements for HEP use case
❖ Handling of fork() (AthenaMP)

➢ Forked processes inherit a copy of parent process’s memory – including all Darshan library
instrumentation state

■ Child process logs inaccurate as they include all pre-fork parent I/O
➢ Modifications made to Darshan library to resolve this:

■ Mechanism to reset a process’s instrumentation state
■ Use pthread_atfork() function to define handler that resets Darshan state on fork children

6

Darshan enhancements for HEP use case
❖ Detailed runtime library configuration

➢ HEP Python frameworks access tons of files, many irrelevant for I/O analysis (shared libraries,
headers, compiled Python byte code, etc.)

➢ Darshan users need more control over memory limits and instrumentation scope
➢ Comprehensive runtime library configuration integrated into Darshan

■ Total and per-module memory limits
■ File name patterns to ignore
■ Application name patterns to ignore

7

allocate 4096 file records for POSIX and MPI-IO modules
(darshan only allocates 1024 per-module by default)
MAX_RECORDS 5000 POSIX

the '*' specifier can be used to apply settings for all modules
in this case, we want all modules to ignore record names
prefixed with "/home" (i.e., stored in our home directory),
with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software *
NAME_INCLUDE .pool.root.* *

bump up Darshan's default memory usage to 8 MiB
MODMEM 8

avoid generating logs for git and ls binaries
APP_EXCLUDE git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld

Analysis of HEP workflows with Darshan
– ATLAS, CMS & DUNE

8

Dune
Gen

9

Broadwell on LCRC@ANL
GPFS
SDCC@BNL
Lustre

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Case study: ATLAS & CMS workflow
Talk + proceeding @ CHEP2023

CMS

CMS
CMS

CMS

ATLAS

ATLAS

● Multi-thread
● Multi-process
● Serial

https://indico.jlab.org/event/459/contributions/11532/

Case study: I/O operations

10

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL
GPFS
SDCC@BNL
GPFS

❖ Equal number of writes/seeks
➢ Generation & Simulation & Reconstruction &

SharedWriter process in Filtering stage at
ATLAS (marked)

❖ Equal sequential & consecutive I/O

I/O Operation Counts

Sequential – next access came somewhere after the last one in the file
Consecutive – next access starts with the byte immediately following the last access

❖ Seeks > reads
➢ Filtering stage (worker process at ATLAS)
➢ Analysis stage

❖ Sequential > consecutive I/O

Case study: Access size

11

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL
GPFS
SDCC@BNL
GPFS

Small reads/writes at O(1KB)
● All stages (marked) except ATLAS Analysis which is at

O(100KB)
● Related to ROOT TTreeCache vector I/O support on certain

FSes
● Potential bottleneck need to be paid attention to for

future HEP workflow developments
● ROOT has a data sieving concept (overread) that might be

taken advantage of

Fixes/enhancements to common software and experiments frameworks
▪ Darshan included fork-safety and better filtering for I/O.
▪ ROOT serialization bottleneck was fixed.
▪ Patch to resolve the Athena library issue on DSO loading hooks which cause PyRoot crash when running with

Darshan

Available in CVMFS
▪ Installed in ATLAS ALRB as an external tool
▪ Can be load and used out of box

12

Deliver Darshan as a tool for HEP

Workflow I/O characterization
▪ Capture MPI and HDF I/O
▪ GPU workflows Benchmarking (DUNE)
▪ Darshan with container (SULI project)
▪ Monitor analysis workflows to better understand

optimal storage parameter for data products
Heatmap visualization of multiprocess data processing workflow
(AthenaMP). 8 workers read input data, while a shared writer

process writes all worker output data from shared memory.

▪ Software performance monitoring between releases at ATLAS – SPOT
– Guiding the evolution of the software and EDM to optimize performance in technical performance, resource usage needs and

usability for analysis
– Monitoring the performance of the software, including the transient and persistent event data models
– Darshan adds abilities of insight on forked processes in time & detailed data access of specific file(s)

• Detailed usage to be explored with the SPOT

13

Adding Darshan to SPOT Toolkit

Example prepared
for SPOT

▪ Software performance monitoring between releases at ATLAS – SPOT
– Guiding the evolution of the software and EDM to optimize performance in technical performance, resource usage needs and

usability for analysis
– Monitoring the performance of the software, including the transient and persistent event data models
– Darshan adds abilities of insight on forked processes in time & detailed data access of specific file(s)

• Detailed usage to be explored with the SPOT

14

Adding Darshan to SPOT Toolkit

Example prepared
for SPOT

Student Engagement
Yanli Lyu (Summer intern from NMSU)
▪ Refining PyDarshan log analysis framework for

workflow analysis

Adhithya Vijayakumar (2023 summer SULI from Texas A&M)
▪ I/O monitoring for portable HPC applications (report)

– Darshan with container

Nehemyah Green (Summer student from IIT)
▪ Working on Ceph, learn Darshan with Ken

15

Adhithya Vijayakumar
Texas A&M University
Physics

Running time difference
when instrumenting with
Darshan

Yanli Lyu
New Mexico State
University

http://i/O%20Monitoring%20for%20portable%20HPC%20applications

