
Model-View Controller
MVVM, State, Props,

Container-Presentation
Cristian Bogdan

Model
Keeps the application data

Discussion: more crucial and less crucial model
properties

dishes, guests Vs currentDish

shapes Vs currentShape

● The Basic Draw editor displays the current shape
in both views but it is not crucial for the application
use case

View
Visualizes the data

Not necessarily graphical (e.g. PostScript text for printer)

Typical implementation: Observer pattern

View is Alice, Model is Bob

Basic Draw:

● Canvas View (with shape type selector)
● Shape editor View (with shape selector, shape property editors)

Incremental update: changes only the view parts specified in the update payload.

Nowadays the frameworks take care of optimizing this, so it’s enough to do full update (re-render)

Controller
1. Listens to events from a view (Bob is View element, Alice is

Controller)
2. Interprets the events
3. Changes the model (this will lead to model-view notification)
4. (also shows, hides the view)

The same event can be interpreted differently by different controllers of
the same view. Example: mouse down+ mouse drag on Basic Draw
Canvas view

● If the mouse-down is on the Canvas directly, we activate the
“Create Controller” to create a Shape, which becomes the current
shape (red)

● If the mouse down is on a shape we activate a “Move Controller”,
which will move the respective shape on mouse drag

● A “boss” controller needed to activate one of them...

MVC Discussion
The M, V, C concerns, as well as Observer (M-V), Listener (V-C) will be recognized by most interaction
programmers

There are cross-cutting concerns like remote data, that muddle the M, V, C separation

The M-V, and C-M separation works well in most cases

The V-C separation is a bit more problematic

● If the Controller needs to add listeners to the relevant input controls, it needs to know the View
internal structure and graphical layout. Separation breaks...

● Or it can listen to bubbling events, but then its code becomes a string of if(event.target…) which also
need to know a bit about the view layout (e.g. button labels)

● The modern way is to make a bit of a compromise and let the view listen to the event, but then
delegate it to the controller, by calling a controller callback

https://docs.google.com/presentation/d/15pNnq6mwoFdlzZe3_k3Y5hMHiykpzdeQ2Bj35KjAmfs/edit#slide=id.g768f273c9b_0_35

Controller passes callback to View (custom event)
class MyView{

 constructor(model, root, changeInteger){

 this.root=root; this.model=model; this.changeInteger=changeInteger;

 }

 render(){ h("div", {}

 , h("button", {onClick: event=>this.changeInteger(-1)},"-")

 , model.getNumberOfGuests()

).render(this.root);

 }

}

class MyController{

 constructor(model, root){

 new MyView(model, root,

 x=> model.setNumberOfGuests(model.getNumberOfGuests()+x)

).render();

 }

}

Note that the View does not
care what the Controller is
doing with the integer it
sends.
We could decouple the view
totally from the model by
sending it an integer, and
update signals. We will do
that later.

This is as if the view
would fire a
“changeInteger” custom
event. Controller is
Alice, View is Bob
The original event is
usually not needed...

Binding
Rather than observe the whole Model, we observe just a variable. For example an integer. Then
mentioning the variable (or an expression) in a View will keep it updated. Examples in Vue.js Templates
(details later).
{{numberOfGuests}}

A separate observer (binding) for e.g.the dishes array. Array rendering:
<div v-for="(dish) in dishes" >{{dish.title}}</div>

Changing the CSS class of a BasicDraw shape depending on whether it is the current shape or not. Also
conditional rendering depending on the shape type.
<rect v:if="shape.type=rectangle" v-bind:class="shape==currentShape?current:normal" >

Two-way binding will both render the value and change it from the user input. This is an INPUT editor for
number of guests. v-model means that the model of our <input> is numberOfGuests...

<input type="number" v-model="numberOfGuests">

With binding there is typically no need for a
Controller at all.
Drawback: too much interaction code
(Controller concern) in the View.

Model-View-ViewModel
In MVVM the View does not observe the Model directly but it is re-rendered (updated) by a ViewModel,
which is also the Controller. The ViewModel, in turn, observes the Model.

Used often in connection with one-way or two-way binding (PropertyChanged events are the binding
notifications).

Controller as ViewModel that adds view as observer
class MyView{

 constructor(integer, changeInteger){

 this.changeInteger=changeInteger; this.integer= integer;

 }

 render(){ return h("div", {} // we return h() instead of rendering

 , h("button", {onClick: event=>this.changeInteger(-1)},"-")

 , this.integer

);

 }

}

class MyViewModel{

 constructor(model, root){

 const update=()=>new MyView(model.getNumberOfGuests(),

 x=> model.setNumberOfGuests(model.getNumberOfGuests()+x)

).render().render(root);

 model.addObserver(update);

 update(); // initial rendering

 }

}

Note that the view
became totally oblivious
of the type of integer that
it shows and edits.

Also the view does not do
much with its state so it
can become a function.
See next slide.

Even simpler: functional View
function MyView(integer, changeInteger){

 return h("div", {}

 , h("button", {onClick: event=> changeInteger(-1)},"-")

 , integer

 , h("button", {onClick: event=> changeInteger(1)},"+") // a little extra

);

}

class MyViewModel{

 constructor(model, root){

 const update=()=> MyView(model.getNumberOfGuests(), //no new!

 x=> model.setNumberOfGuests(model.getNumberOfGuests()+x)

).render(root);

 model.addObserver(update);

 update(); // initial rendering

 }

}

View/Component function
names start with a capital
letter as a matter of style (or
as requirement for some
frameworks)

Since the view code is
basically its render()
function, we can transform it
into a function. We also let
the controller call
render(root)

Even simpler: functional ViewModel and View!
function MyView(integer, changeInteger){

 return h("div", {}

 , h("button", {onClick: event=> changeInteger(-1)},"-")

 , integer

 , h("button", {onClick: event=> changeInteger(1)},"+")

);

}

function MyViewModel(model, root){

 const update=()=> MyView(model.getNumberOfGuests(),

 x=> model.setNumberOfGuests(model.getNumberOfGuests()+x)

).render(root);

 model.addObserver(update);

 update(); // initial rendering

}

Transforming single-method
classes in functions does not
always work, especially
when a View or viewModel
needs to keep state. But it
often works and is preferred
by programmers.

React makes special
provisions for supporting
functional components, for
example the State hook.

Hierarchical MVC / MVVM
Consider an <input type="text" value="initialValue"> . It does MVC internally!

● View: the box with focus mark around it, with text inside it, cursor,
● Model: has focus? Is mouse over? cursor Position, Current Value
● Controller: mouse down (move cursor), mouse drag (select), mouse up, key

typed, focus, blur. All these events change the model, which update the
View.

● Initial values (e.g. attributes) come from the outside world
● Sometimes the controller fires events (like <input> fires oninput and

onchange), to the outside world

The modern component. State and props
<input type="text" value="initialValue" >

● Internal component mini-model is called state. It is different from the Application State (model)
○ Or from the state of the parent (enclosing) components

● Initial value properties/attributes are called props. Read only. Used to get data from the outside world
● A few special props are used to fire events to the outside world. These are called custom events

const MyInputComponent = (initialValue, onValueChange) =>

 h("input", {type:"text", value:initialValue, // event.target is the <input> !

 onInput: event=> onValueChange(event.target.value) })

Just like HTML elements take a single attribute parameter (h(“input”, {attrs})), modern components take one
single props parameter, which they typically access through destructuring (though not necessarily)
const MyInputComponent = ({initialValue, onValueChange}) =>

 h("input", {type:"text", value:initialValue,

 onInput: event=> onValueChange(event.target.value) })

https://docs.google.com/presentation/d/1iTqR2LdrbVuepmQgl0cZXmkADdQ_1C5CFN5G5PXAAOQ/edit#slide=id.g768805f8bb_0_28

Which components need to keep state?
Keeping state= have other internal models, different from the application Model

● SidebarView?
● SummaryView?
● SearchView?

● Basic Draw Canvas?
● Basic Draw shape edit form?
● Basic Draw shape property editor?

As shown before, HTML Elements keep state.
Sometimes (but not in React!) one can use
them as “memory” and not define own state
properties. Examples

● The Shape Type chooser of the Basic
Draw Canvas

● The search terms of the Dinner planner
search views

React overrides the HTML Element values
from its component props and state

Props down, events up. Custom components
Typically “the outside world” is another component, that uses our component. Props down (from the
enclosing component), events up (to the enclosing component)
const MyInputComponent = ({initialValue, onValueChange}) =>

 h("input", {type:"text", value:initialValue,

 onInput: event=> onValueChange(event.target.value) }) // events up!

The enclosing component can then use MyInputComponent by calling the function:
MyInputComponent({initialValue: model.getNumberOfGuests(), // props down

 onValueChange: x=> model.setNumberOfGuests(x)});

Or use MyInputComponent in hyperscript like an element! (custom component)
const EnclosingComponent= ({model})=>

 h(MyInputComponent, {initialValue: model.getNumberOfGuests(),

 onValueChange: x=> model.setNumberOfGuests(x)}

Container and Presentational components
Presentational components are generic and independent of any application model (aka Application State).
They can be written by somebody else, with no knowledge of your application

● number editor (can be used in Sidebar)
● table display (sortable, etc) (can be used in Sidebar, Summary, DishDetails)
● “folder” icon+label display(s) (can be used in Search results, maybe Sidebar, Summary…)

Even if you need to write a presentational component (e.g. DishDetailsPresentation), you can still apply the
main principle: no knowledge of the Application State! Just knowledge of the Spoonacular structure and
number of food portions.

Container components do the “glue” work between Presentational components and Application State
● Map the props of Presentational to Application state props
● Map the custom events of the Presentational to callbacks that change the App state
● Typically render no graphical appearance, just use one or more Presentational
● Can be generated automatically using e.g. react-redux

Container and Presentational components
const EnclosingComponent= ({model})=>

 h(MyInputComponent, {initialValue: model.getNumberOfGuests(), // props down

 onValueChange: x=> model.setNumberOfGuests(x)}) // events up

Note that the Enclosing (container) component renders no graphical elements (no DIV etc) but just connects (glues)
the inner (MyInputComponent) component to the application state (model).

MyInputComponent Presentational component props and implementation
have no knowledge of the Model! (application state)

The previously introduced view-model is also a container, but not a component that can be used with h(). It glues to the
Model:
function MyViewModel(model, root){
 const update=()=> MyView(model.getNumberOfGuests(), // props down
 x=> model.setNumberOfGuests(model.getNumberOfGuests()+x) // events up
).render(root);
 model.addObserver(update);
 update(); // initial rendering
}

View and Presenter: “glue” function
Instead of defining Container components explicitly, one often generates them using an ordinary function
that “glues” a Presentational component, which it gets as parameter, to a certain App state. For example for
the DinnerModel.

const glueToModel= (View) => h(View,
 { guests: model.getNumberOfGuests(), setGuests: x=> model.setNumberOfGuests(x),
 dishes: model.getMenu(), dishSelected: d=>model.removeDish(d)});

const Sidebar= glueToModel(SidebarView);
const Summary= glueToModel(SummaryView);

You will typically have several glue functions, depending on where your
Presentational components come from, what props need to be glued, etc.

react-redux
connect() returns a

glue function!

https://react-redux.js.org/api/connect

Example: possible Presentational components in the
dinner planner
SidebarView

● an integer editor (glued by the Container to model.mumberOfGuests)
● a sortable table (glued by the Container to model.dishes)

SummaryView

● a sortable table (glued to model.getIngredients())

SearchView

● a list of icons, maybe sortable, like a file explorer folder (glued by
Container to the search results)

Once the
container-presentation
separation is done, you
can plug in any
component from the
internet for the number
editor, table, or icon list).

In DOM using h() you
can e.g. use Bootstrap
DataTable

In React or Vue.js (TW4,
project) you will find
many such generic
components for tables,
number editors, icon
lists etc.

https://mdbootstrap.com/docs/jquery/tables/sort/
https://mdbootstrap.com/docs/jquery/tables/sort/

