BACKGROUND
Y | .\onec o

To help you dive into the world of creative (xea“‘ve

computing as quickly as possible, we have

assembled answers to eight common questions: (‘Omp“t‘“g

2. What s Scratch? (_“ﬂ\c“\“m
. What is this quide? o

4. Who is this quide for? G“\de"

5. What do | need in order to use this guide?

6. What is included in this guide?

7. How should | use this quide?

8. Where did this guide come from?

WHAT IS CREATIVE COMPUTING?

1. What is Creative Computing?
3

3 payanm () snare D+ tor () beats

Creative computing is about creativity. Creative computing is about agency. Creative computing is about computing.
Computer science and computing-related Many young people with access to Engaging in the creation of computational
fields have long been introduced to young computers participate as consumers, rather artifacts prepares young people for more
people in a way that is disconnected from than designers or creators. Creative than careers as computer scientists or
their interests and values - emphasizing computing emphasizes the knowledge, programmers. It supports young people’s
technical detail over creative potential. practices, and fundamental literacies that development as computational thinkers -
Creative computing supports the young people need to create the types of individuals who can draw on
development of personal connections to dynamic and interactive computational computational concepts, practices, and
computing, by drawing upon creativity, media that they enjoy in their daily lives. perspectives in all aspects of their lives,

imagination, and interests. across disciplines and contexts.

WHAT IS SCRATCH?

There are many different tools that can be used
for creative computing. In this guide, we use
Scratch, which is a free computer programming
language available at http://scratch.mit.edu.
With Scratch, people can create a wide variety
of interactive media projects - animations,
stories, games, and more - and share those
projects with others in an online community.
Since Scratch’s launch in May 2007, hundreds of
thousands of people all around the world have
created and shared more than 6 million
projects.

WHAT IS THIS GUIDE?

This quide is a collection of ideas, strategies, and activities for an introductory creative computing experience using
the Scratch programming language. The activities are designed to support familiarity and increasing fluency with
computational creativity and computational thinking. In particular, the activities encourage exploration of key
computational thinking concepts (sequence, loops, parallelism, events, conditionals, operators, data) and key
computational thinking practices (experimenting and iterating, testing and debugging, reusing and remixing,
abstracting and modularizing). Learn more about computational thinking - what it is and how to assess its
development in learners - from resources in the appendix or by visiting http://scratched.gse.harvard.edu/ct

Inspired by constructionist approaches to learning, the activities in this quide emphasize the following principles:

PRINCIPLE #1: W PRINCIPLE #2: | PRINCIPLE #3: W PRINCIPLE #4:

CREATING PERSONALIZING SHARING REFLECTING

Offer opportunities for Offer opportunities for Offer opportunities for Offer opportunities for
learners to engage in learners to engage in learners to engage in learners to review and
designing and making, not activities that are interactions with others as rethink their creative
just listening, observing, personally meaningful and audience, coaches, and practices.

and using. relevant. co-creators.

http://scratched.gse.harvard.edu/ct
http://scratch.mit.edu

WHO IS THIS GUIDE FOR?

No matter your current context or prior

o
(_‘-ea“\’e
®
ience, this guid designed with a wid 3
LTI, opputing 1S

a few examples of who might use the guide and

how they might use it: fO‘

K-12 TEACHER

"""""""""""""""""""""""""""" e\,ewbod\]"

i Scratch is being used in thousands of elementary, middle-school,
i and high-school classrooms around the world. The guide can be
i used in its entirety as a semester-long computing course, or

' selectively as part of other curricular areas. Many educators

; introduce creative computing as an after-school or lunch-time

i program, using the activities as inspiration and scaffolding for

1 students’ open-ended explorations.

ST ’ COLLEGE INSTRUCTOR

Scratch can serve as an introduction to fundamental computational
concepts and practices, often followed by a transition to more
traditional text-based programming languages in computer science
courses. For example, the CS50 course at Harvard University uses
Scratch as an introductory programming experience before
transitioning to the C programming language. The activities have
also been used as part of education, art,and media literacy courses
at the college level.

In addition to formal learning environments like classrooms,
Scratch has been used in informal learning spaces like museums
and libraries. Whether as a structured workshop experience or a
drop-in play space, these learning environments are ideal for
supporting explorations in creative computing, without some of the
restrictions present in traditional settings.

Over the past seven years since Scratch’s launch, young learners
have been passionate advocates for creative computing in a variety
of settings. From introducing their parents and teachers to

Parents can use the guide in a wide range of ways. From supporting i i
| |
1 1
' programming, to creating learning opportunities for their peers, !
| |
1 1
1 1
1 1

homeschooling activities, to starting creative computing clubs at
school, to hosting workshops at local community centers, parents
are encouraged to think about how to use the guide to support the

creative computing experiences of young Learners creative computing can be something that is done with them or by

them, rather than just for them.

WHAT DO | NEED IN ORDER TO USE THIS GUIDE?

In addition to time and an openness to adventure, some important resources include:
+ Computers with speakers (and, optionally, microphones and webcams): for the computer-based design activities

+ Network connection: for connecting to Scratch online (if your environment does not offer a network connection, a
downloadable version of Scratch is available)
Projector or interactive whiteboard with speakers: for sharing works-in-progress and for demonstrations
Design notebooks (physical or digital): for documenting, sketching, and brainstorming ideas and plans

WHAT IS INCLUDED IN THIS GUIDE?

This guide is organized in seven units — from
an initial preparatory unit to a culminating
project-based unit — with each unit typically
including six activities. A summary of each unit
follows:

UNIT 0 - GETTING STARTED

UNIT 1 - EXPLORING

v
=
(=]
=
=
=
5
~
=
=
=

Prepare for the culture of creative computing by
exploring possibilities and setting up technical
infrastructure (e.g., creating Scratch accounts, starting
design journals) and social infrastructure (e.g.,
establishing critique groups). Dive into an initial
creative experience by making something
“surprising” happen to a Scratch character.

Get comfortable with the key computational concept
of sequence through a series of activities that
provide varying levels of structure - from a
step-by-step tutorial, to a creative challenge using a
limited number of blocks, to open-ended
explorations through making a project about
yourself.

Play with visuals and audio in these activities
focused on animation, art, and music. Explore
Scratch’s focus on media - and the key
computational concepts of loops, events, and
parallelism - by building your own band, designing
animated creatures, and creating a music video for a
favorite song.

UNIT 3 - STORIES

w1
L
>
S
<+
=
=
=

UNIT 6 - HACKATHON

Create new interactive worlds through collaborative
storytelling. Begin by developing characters, learning
to code conversations, and then situating those
characters and conversations in shifting scenes.
Combine characters, conversations, and scenes in a
larger story project that is passed along to other
creators to further develop - and possibly reimagine
entirely!

Connect fundamental game mechanics such as
score and levels to key computational concepts,
such as variables, operators, and conditionals.
Analyze your favorite games, imagine new ones, and
practice game design by implementing (and
extending) classic games, like Pong.

Before the culminating unit, take a moment to revisit
work from prior units, further exploring advanced
concepts or helping others by designing new
activities or debugging challenges.

Put all of the computational concepts and practices
into action by designing and developing a project of
your own through iterative cycles of planning,
making, and sharing.

Assessment strategies are described throughout the quide, and several assessment instruments are included in the guide
appendix. Our approach to assessment is process-oriented, with a focus on creating opportunities for students to talk about
their own (and others’) creations and creative practices. There are many forms of process-oriented data that could be collected

and various strategies are suggested throughout the guide, such as:

+ supporting conversations with and among students about their projects, recorded through audio, video, or text

+ examining portfolios of projects
+ maintaining design journals

We view assessment as something that is done with students, to support their understanding of what they already know and
what they still want to learn. Assessment can involve a variety of participants, including the creators, their peers, teachers,
parents, and others.

HOW SHOULD | USE THIS GUIDE?

We encourage you to use as much or as little of the
guide as you like, to design new activities, and to
remix the included activities. No matter your prior
experience or expertise, we think of every educator
as a co-designer of the Creative Computing
experience. We would love to learn about what
you're doing, so we encourage you to document and
share your experiences with us and with other
educators via the ScratchEd community at

RN . http://scratched.gse.harvard.edu
/
\
/Yl
/ CHOOSE \ We are releasing this guide under a Creative
YOUR OWN " Commons Attribution-ShareAlike license, which means

i that you are completely free to use, change, and share
v ADVENTURE! /l | this work, as long as you provide appropriate
\ N y ' attribution and give others access to any derivative
~ . i works.

WHERE DID THIS GUIDE COME FROM?

This guide was developed by members of the ScratchEd research team at the Harvard Graduate School of Education - Christan
Balch, Michelle Chung, and Karen Brennan. Jeff Hawson provided editing support and inexhaustible enthusiasm.

The quide contents draw on a previous version of the Creative Computing Guide (released in 2011) and on the Creative
Computing Online Workshop (hosted in 2013). These were made possible with support from the National Science Foundation
through grant DRL-1019396, the Google CS4HS program, and the Code-to-Learn Foundation.

We are enormously appreciative of the numerous educators who have used the previous version of this guide and participated
in workshops. In particular, we would like to thank the educators who extensively tested the first quide (Russell Clough, Judy
Hoffman, Kara Kestner, Alvin Kroon, Melissa Nordmann, and Tyson Spraul) and the educators who extensively reviewed the
current guide (Ingrid Gustafson, Megan Haddadi, Keledy Kenkel, Adam Scharfenberger, and LeeAnn Wells).

We are also greatly appreciative of our collaborators. We would like to thank Wendy Martin, Francisco Cervantes, and Bill Tally
from Education Development Center’s Center for Children & Technology, and Mitch Resnick from the MIT Media Lab for their
extensive contributions in developing the computational thinking framework and resources. We would like to thank the many
amazing Harvard Graduate School of Education interns who have contributed to the guide development over the past several
years since the initial version in 2011, including Vanity Gee, Vanessa Gennarelli, Mylo Lam, Tomoko Matsukawa, Aaron Morris,
Matthew Ong, Roshanak Razavi, Mary Jo Madda, Eric Schilling, and Elizabeth Woodbury.

