Lecture 9: Reductions

Mark Saroufim

Follow along

Chapter 10 of PMPP book

Locally or remotely https://lightning.ai/

git clone https://github.com/cuda-mode/lectures

cd lecture9
NnvVCC -0 sum *.cu

NCU Sum

https://lightning.ai/
https://github.com/cuda-mode/lectures

What's a reduction

Operations that reduce the output size
Most typical take a vector and produce a scalar
min, max, argmax, argmin norm, sum, prod, mean, unique

Demo: torch_reductions.py

Reductions are everywhere

Mean/Max pooling
Classification: Argmax
Loss calculations
Softmax normalization

Reductions in PyTorch

https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/ReduceOps.cpp

>>> g = torch.randn(1, 3)

>>>

tensor([[0.6763, 0.7445, -2.2369]])
>>> torch.max(a)

tensor(0.7445)

https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/ReduceOps.cpp

Serial reduction example

Max operation
Go through elements 1 by 1

Compare new number to old max if greater
then update

More general formulation

e

def reduce(data, identity, op):
result = identity
for element in data:
result = op(result, element)
return result

data = [1, 2, ol

print(reduce(data, 0, lambda a, b: a + b))

print(reduce(data, 1, lambda a, b: a * b))

print(reduce(data, float('-inf'), max))

print(reduce(data, float('inf'), min))

https://qist.qithub.com/msaroufim/a062aa0b08a4cc57e02db634a67c6b20

https://gist.github.com/msaroufim/a062aa0b08a4cc57e02db634a67c6b20

Transformation vs reduction
What should the thread strategy be?

Output size < Input size that’'s why we call them reductions

—— - ~
— ® ==
/'

N

Transformation: Reduction:

e.g. c[i] = a[i] + 10; e.g. “c = X a[i]
Thread strategy: one thread per output Thread strategy: ??
point

https://www.youtube.com/watch?v=D411YMsGNIU&t=1763s

Parallel Reduction visualization

At each step take a pair of elements and
compute their max and store the new max in
new vector

Continue until there is 1 element in the
vector

O(log n) steps

Reduction Trees:

]

il

o
o

FIGURE 10.5

16

44

o

13

15

o

28

A parallel sum reduction tree.

Non determinism and accuracy

torch.use deterministic_algorithms(True)
Demo

e nondeterminism.py
e accuracy.py

Reduction Kernel

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 o A |Ot Of th reads WI ” be

é é é % 2 % % 2 inactive :(

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HENENEEEREREEE

| e Alot of warps (groups of
Ll|/|l|/|l/|L|/|l|/|l{ L{llj/‘ 32 threads) will be

inactive :(
HENEE HENEEE e Let’s check ncu -set full

FIGURE 10.7

The assignment of threads (“owners”) to the input array locations and progress of
execution over time for the SimpleSumReudctionKernel in Fig. 10.6. The time
progresses from top to bottom, and each level corresponds to one iteration of the for-loop.

simple_reduce.cu

Remember the performance checklist

Lecture 8!

Control divergence

Memory divergence

Minimize global memory access
Thread coarsening

Minimize Control Divergence

Ensure threads and

their owned positions
remain close together
as time progresses or

w\NThread 0
w/\NThread 1
w/\N\Thread 2
w/\NThread 3
w\N\Thread 4
wA\N\Thread 5
AN\ Thread 6
w\N\Thread 7

§

\

Quiz: Which other —
problem does this fix?

V4

FIGURE 10.8

A better assignment of threads to input array locations for reduced control divergence.

control_divergence _reduce

Minimize Global Memory ACcess

w/\NThread 0
w/\NThread 1
w/\N\Thread 2
w/\N\Thread 3
w\ N\ Thread 4
AN Thread 5
A\ Thread 6
/N Thread 7

= Wal memory

/j Subsequent writes and reads
continue in shared memory

FIGURE 10.10

Using shared memory to reduce accesses to the global memory.

shared_reduce.cu

Hierarchical reduction

Let’s try running input size 4096

| Input |
| | |
| Segment, | | Segment, | | Segmenty; |
NN NN RN NGB BB A @
[1 Block, [j tl Block, [i] é Blockg 4 D
8 s 8
o — ‘uatomicafird_,,,/—”"/

FIGURE 10.12

Segmented multiblock reduction using atomic operations.

segment_reduce.cu

Thread Coarsening (Andreas’ favorite optimization)

[[T TTT1]

FIGURE 10.14
Thread coarsening in reduction.

reduce_coarsening.cu

Next steps

Lecture 1-8 gave you everything you need to start writing, profiling and shipping
kernels in PyTorch so start picking a project - Look for collaborators in #general to
stay motivated

Next Lecturer is Oscar who will talk about shipping production CUDA libraries

Looking for lecturers interested in covering prefix sum (scan) and NCCL

Bonus slides: Reductions In
the real world

Example of reductions

User facing ops

How reductions are implemented in PyTorch

e https://qithub.com/pytorch/pytorch/blob/4b494d075093096d822b9d614e2719
a0e821cbaf/aten/src/ATen/native/cuda/ReduceMaxValuesKernel.cu#L53

e https://qithub.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/Redu
ce.cuh

e https://qithub.com/pytorch/pytorch/blob/main/aten/src/ATen/native/metal/ops/
MetalReduce.mm

e CPP style of CUDA (Might need its own lecture)

https://github.com/pytorch/pytorch/blob/4b494d075093096d822b9d614e2719a0e821c6af/aten/src/ATen/native/cuda/ReduceMaxValuesKernel.cu#L53
https://github.com/pytorch/pytorch/blob/4b494d075093096d822b9d614e2719a0e821c6af/aten/src/ATen/native/cuda/ReduceMaxValuesKernel.cu#L53
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/Reduce.cuh
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/Reduce.cuh
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/metal/ops/MetalReduce.mm
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/metal/ops/MetalReduce.mm

Key ideas

e Implementation is accumulator and reduction op agnostic

e Tensorlterator to iterate over tensor elements

e ReduceConfig: Has kernel launch parameters like block size and number of
threads, grid etc.. and its set in setReduceConfig

e Reduce kernel is where it gets launched

e Reduction strategies: thread level, block level x,y, or global reduce

e \ectorization: Over input and/or output

torch.compile!

To the notebook - reduce compile.py
Look out for

e ReductionHint
e tl.sum
e triton_heuristics

Triton

https://qgithub.com/openai/triton/blob/main/lib/Conversion/TritonGPUTolLLVM/Redu
ceOpToLLVM.cpp

/I First reduce all the values along axis within each thread.
reduceWithinThreads(helper, srcValues, accs, indices, rewriter);
// Then reduce across threads within a warp.

reduceWithinWarps(helper, accs, rewriter);

https://github.com/openai/triton/blob/main/lib/Conversion/TritonGPUToLLVM/ReduceOpToLLVM.cpp
https://github.com/openai/triton/blob/main/lib/Conversion/TritonGPUToLLVM/ReduceOpToLLVM.cpp

