

Joanna Rymut

"Developing a fast simulator for irradiated silicon detectors"

(TRACS radiation upgrade)

i F (A Instituto de Física de Cantabria

Álvaro Díez González-Pardo (Summer Student 2015)

WAREANT

Project description

"Simulation and measurements of heavily irradiated silicon detectors: CMS HPK and HGC campaigns"

Expand TRACS functionality and performance

TRACS is an open source program developed by Pablo de Castro (Summer Student 2014) Fast **TRA**nsit **C**urrent **S**imulator based on Ramo's theorem that uses external libraries for calculations FEM

Project description

What we want to achieve:

"Fast simulation of irradiated detectors with selectable free parameters that can be fitted to measurements"

What we need to implement in TRACS

- Simulation of irradiated detectors
- Tunable Neff distribution —— Our free parameters
- Simulate trapping effects
- Accurate simulation of electronics (Shaping)
- Performance improvements (parallelization?)

Basics of silicon detectors

Basics of silicon detectors

Velocity is proportional to the electric field

Current generated due to electric induction

i.e. its proportional to the velocity

edge-TCT illumination allows as to "see" the field inside the detector

Simulate diode and strip detectors

Calculate weighting and electrical potentials and fields

Simulate waveform due to a single e-h pair

😣 🖨 🗊 🛛 TRACS: Tra	ansient Current Si	mulator									
Potentials Fields	Currents Carriers										
							SINGLE CARRIER				
270							Carrier type	electron+hole			*
270							q (e units)	1			
225 -							X Position (mum)	380.02			*
225							Y Position (mum)	173.24			÷
180 -							Time Step (ps)	10.00			
							Max TIme (ns)	10.00			•
135 -							# Steps		Generate and Drift		
90 -						-					
45 -						-					
0	100	200	300	400	500	600 700	i -				
7.10-10 L		1					CONSTANT CARRIE	ER DISTRIBUTION THROUGH A LINE			
						electron					
6·10 ⁻¹⁰						hole total	Start Point (x[mu	m], y[mum])	0.00	0.00	
5·10 ⁻¹⁰								1 [1)			
£ 4.10-10							End Point (X[mun	nj, y[mumj)	0.00		×
ent (
3.10-10							Carrier Separation	n (mum)	0.00		*) *)
-											
2.10 ⁻¹⁰								View Line		Generate and Drift	
1 10-10											
1.10-10										Cours Describe to File	
					· · · · ·					Save Results to File	
U	1.5.10-9	3-10-9	4.5·10 ⁻⁹ Ti	6·10∹ ime (s)	7.5.10*	9.10-2					8
											5

Simulate signal generated by any kind of illumination simple RC shaping was also implemented in November

First Step - Changing Neff distribution

Neff before irradiation

Third Approach* - 3 zone Neff

3 parabolas (one per Neff zone)

Second Approach* - 3 zone Neff

- Microstrip
- IR laser
- edge-TCT (~180µm)

- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

- Microstrip
- IR laser
- edge-TCT

- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

Progress report

All that TRACS already does and ...

- Simulation of irradiated detectors (given Neff distribution)
- Include trapping effects
- Improve RC shaping by means of convolution with amplifier
- Output format mimicks TCT+ data format. Simulation can be analyzed with standard eTCT analysis software
- Improved performance using less carriers per simulation
- □ Further performance improvements through parallelization
- \Box Fit simulation to experimental data
- ? Irradiated simulation in GUI
- ? Input file to avoid recompiling all the time

Near future

Will call "main.cpp" with different Neff configurations searching for the best fit to measurements Write minimization code χ^2

One more thing...

Code is available on GitHub

You are encouraged to

Thanks for your attention

- Microstrip
- IR laser
- edge-TCT (~15µm)

Non-irradiated mirostrip

- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

Irradiated mirostrip

- Microstrip
- IR laser
- edge-TCT (~290µm)
- Non-irradiated mirostrip

- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

Irradiated mirostrip

Second Approach* - 3 zone Neff

Second Step - Trapping

Simple exponential decay - Fast and accurate enough

- Microstrip
 - IR laser
- edge-TCT (~280µm)

- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

FIELDS

- Microstrip
- Bias = 500v
- Vdep* = 250v

*Vdep has no relevance for irradiated simulations

Agreement with published results

