Towards Understanding �Automated Deep Learning
Prof. Dr. Marius Lindauer
@LindauerMarius
@AutoML_org
These slides are available at www.automl.org/talks --- all references are hyperlinks
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
AutoDL: Automated Deep Learning
2
Optimizer
Validation performance�(e.g., accuracy)
AutoDL Tool
Training Data
Validation Data
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
3
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Characteristics of Opt. Problem of AutoML/DL
4
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
LCBench: Learning Curve Benchmark [Zimmer et al. 2020]
5
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Heatmap & Portfolio
6
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
7
7
Landscape?
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Multi-Fidelity Optimization
8
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Correlation between Budgets (e.g., #Epochs)
9
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Hyperparameter Importance across Budgets
10
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Take Away
11
Opt.
Validation performance�(e.g., accuracy)
AutoDL Tool
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover
Thank you!
12
@LindauerMarius
@AutoML_org
AutoDL@UMLOP@PPSN’20
M. Lindauer
Leibniz University Hannover