

WAGNER FILHO

MATEMÁTICA

FUNÇÃO QUADRÁTICA

30/03/2022

Função Polinomial do 2º grau

- ☐ Composição de uma função do 2º grau
 - ☐ Equação do 2º grau: Definição e Resolução de uma equação de 2º grau

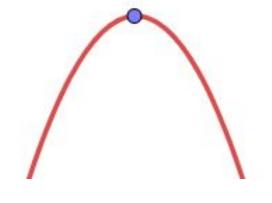
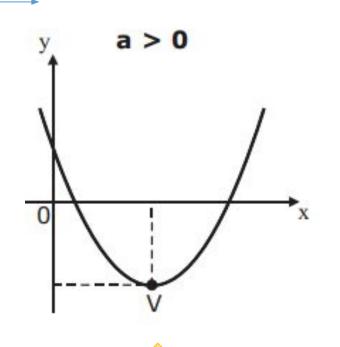


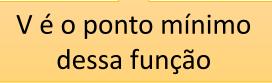
Gráfico da Função quadrática

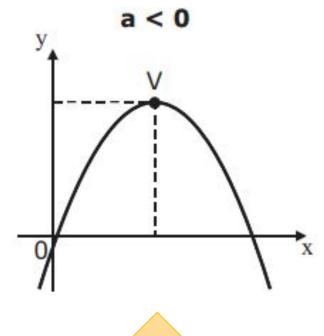
O gráfico, de uma função quadrática é uma curva denominada parábola. O sinal do coeficiente "a" determina a concavidade dessa parábola.

a > 0 (positivo)Concavidade para cima

a < 0 (negativo) Concavidade para baixo







Vértice (V)

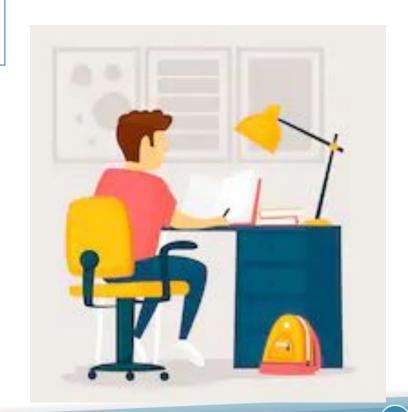
- Se a > 0, a parábola tem concavidade voltada para cima e um ponto de mínimo V;
- Se a < 0, a parábola tem concavidade voltada para baixo e um ponto de máximo V;
- O ponto V é chamado vértice da parábola.

V é o ponto máximo dessa função

Coordenadas do Vértice

• x_v é a média aritmética das raízes da função, ou seja: $x_v = \frac{x_1 + x_2}{2}$

Para calcular y_v podemos substituir o x por x_v na função.



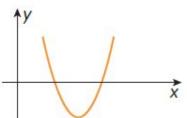
Coordenadas do Vértice

Exemplo 1: Determine as coordenadas do vértice da função $f(x) = x^2 - 8x + 15$.

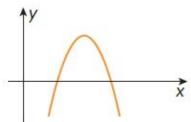
Coordenadas do Vértice

Exemplo 2: Determine as coordenadas do vértice da função $f(x) = -2x^2 + 4x + 9$.

Exercícios de Fixação


REVISANDO

Função quadrática


$$f(x) = ax^2 + bx + c \quad a \neq 0$$

- ☐ O gráfico é uma PARÁBOLA.
- ☐ A concavidade da PARÁBOLA tem concavidade para cima ou baixo.

Coordenadas do vértice

$$V = \left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$

☐ A PARÁBOLA toca o eixo y no "c". ☐ A PARÁBOLA toca o eixo x no(s) zero(s) da função.

	a > 0	a < 0
$\Delta > 0$	X_1 X_2 X	X_1 X_2 X
$\Delta = 0$	$X_1 = X_2$	$X_1 = X_2$
Δ < 0		X

Forma fatorada

$$f(x) = a(x - r_1) \cdot (x - r_2)$$

$$f(x) = a(x - x_v)^2 + y_v$$

Exercícios de Fixação

Questão 01

Um goleiro, ao colocar a bola em jogo, chuta a bola e vê que o movimento desta descreve uma parábola. Um matemático que estava assistindo ao jogo informa que essa parábola é descrita pela função $f(x) = -x^2 + 4x + 5$ e que a distância percorrida pela bola é dada em metros.

Nestas condições, é CORRETO afirmar que a altura máxima atingida pela bola foi:

- A) 12 metros
- B) 36 metros
- C) 16 metros
- **D)** 9 metros
- E) 11 metros

Exercícios de Fixação

Questão 02

Um infectologista observa que um vírus descreve um percurso que é representado pela função $f(t) = 2t^2 - 4t + 4$, na qual $t \ge 0$ é o tempo dado em segundos e f(t) representa o deslocamento do vírus dado em metros. Qual o tempo gasto pelo vírus para obter a velocidade de 80m/s?

- **A)** 18 s
- **B)** 22 s
- **C)** 21 s
- **D)** 20 s
- **E)** 25 s