LAYOUT OF ELEMENTS IN ENTIRE BOOSTER SYSTEM

# High Energy Physics (HEP) Overview

INJECTION LINE

RANSFER LINE and MEASUREMENT LINE

Most slides taken from previous Quarknet presentations, particularly Jeremy's from 2020!

ISOLDE LINE

### What are we looking at?

| Event | XY Radius (cm) | Length Z (cm) | cos theta x | cos theta y | cos theta z | Sum E-Cal | Muon Tag |
|-------|----------------|---------------|-------------|-------------|-------------|-----------|----------|
| 50001 | -1808.48       | 20994.94      | 0.47        | -0.10       | -0.88       | 9127.05   |          |
| 50001 | 1808.48        | 20994.93      | -0.47       | 0.10        | 0.88        | 9127.05   |          |
| 50002 | -2801.12       | 16128.99      | -0.21       | -0.71       | 0.68        | 0.00      | Hit      |
| 50002 | 2801.12        | 16128.99      | 0.21        | 0.71        | -0.68       | 0.00      | Hit      |
| 50003 | -2959.26       | 14972.58      | 0.17        | -0.76       | -0.63       | 0.00      |          |
| 50003 | 2894.38        | 15465.20      | -0.39       | 0.65        | 0.65        | 0.00      |          |
| 50004 | -63.16         | 23869.40      | -0.01       | -0.01       | -1.00       | 9140.57   |          |
| 50004 | 63.16          | 23869.40      | 0.01        | 0.01        | 1.00        | 9140.57   |          |
| 50005 | -2245.86       | 19255.54      | -0.59       | 0.00        | 0.81        | 0.00      |          |
| 50005 | 2811.81        | 16055.31      | 0.64        | 0.36        | -0.67       | 0.00      |          |
| 50006 | -3799.30       | 219.73        | 0.51        | 0.86        | 0.01        | 9129.13   |          |
| 50006 | 3799.30        | 219.73        | -0.51       | -0.86       | -0.01       | 9129.13   |          |
| 50007 | -3389.30       | 10788.96      | 0.03        | 0.89        | -0.45       | 0.00      | Hit      |
| 50007 | 3389.30        | 10788.95      | -0.04       | -0.89       | 0.45        | 0.00      | Hit      |
| 50008 | -2988.41       | 14742.48      | 0.73        | -0.29       | 0.62        | 9120.09   |          |
| 50008 | 2988.41        | 14742.48      | -0.73       | 0.29        | -0.62       | 9120.09   |          |

#### What are we measuring and how do we understand what we see?

### What are the learning goals?



### The Standard Model





What is particle physics?



What is particle physics?

1

### There's more! Resources:

- Particle Adventure (good resource for students)
- <u>Hyperphysics particle physics topics</u> (medium difficulty between these two resources)
- <u>Particle Data Group PDG</u> (detailed resource, includes pamphlet you can order or use <u>interactive</u> <u>online version</u>)

\*thanks Jeremy for researching these!

### The LHC and New Physics



## ATLASdetector

How do particle detectors work?

### **Generic Particle Detector**

Cylinders wrapped around the beam pipe

From inner to outer . . . Tracking Electromagnetic calorimeter Hadronic calorimeter Magnet\* Muon chamber



location of magnet depends on specific detector design

### **Detector Tracks**

#### All detectors have 4 basic layers



How do particle detectors work?

### **Detector Tracks**



How do particle detectors work?

### Energy & Particle Mass

If each beam proton has energy 4 TeV....

- The total collision energy is 2 x 4 TeV = 8 TeV
- Each particle inside a proton shares only a portion
- A newly created particle's mass *must be* smaller than the total energy



### Particle Decays

The collisions create new particles that promptly decay.

Decaying particles *always* produce lighter particles.

Conservation laws allow us to see patterns in the decays.

Ex) neutral, large blue decays into net neutral, smaller reds



### **Higgs Particle Production**

The Higgs boson decays into daughter particles, sometimes including muons.

Other particles also produce muons, such as the Z boson.



### Still more resources!

#### <u>CERN detector overview</u>, good for students

Detailed presentation on detector physics, includes historical overview <u>https://www.desy.de/~garutti/LECTURES/ParticleDetect</u> <u>orSS12/L1\_Introduction\_HEPdetectors.pdf</u>

What are we seeing in the detectors?



How do we analyze the data?

### A Word About Units



Make c = 1 and E = p = m, everything in GeV

The famous Einstein relationship for energy

$$E = mc^2$$

can be blended with the relativistic momentum expression

$$p = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

to give an alternative expression for energy.

The combination **<u>PC</u>** shows up often in relativistic mechanics. It can be manipulated as follows:



and by adding and subtracting a term it can be put in the form:

$$p^{2}c^{2} = \frac{m_{0}^{2}c^{4}\left[\frac{v^{2}}{c^{2}}-1\right]}{1-\frac{v^{2}}{c^{2}}} + \frac{m_{0}^{2}c^{4}}{1-\frac{v^{2}}{c^{2}}} = -m_{0}^{2}c^{4} + (mc^{2})^{2}$$

which may be rearranged to give the expression for energy:

$$E = \sqrt{p^2 c^2 + (m_0 c^2)^2}$$

Note that the m with the zero subscript is the rest mass, and that m without a subscript is the effective <u>relativistic mass</u>.

#### How do we analyze the data?

$$E^2 = p^2 c^2 + m_0^2 c^4$$

#### Let's make c = 1

$$E^2 = p^2 + m_0^2$$

$$m = \sqrt{E^2 - p^2}$$

4