Time Series DB

Every data is time series ^_^

Is Time Series DB trandy?

Complete trend, starting with January 2013

And 2 years!

Trend of the last 24 months

Lets check the last year!

Trend of the last 12 months

How many time series DBs are there?

Why do we need Time Series DB?

To store Time Series Data!

Thank you, captain Obvious.

Your work here is done!

What is Time Series Data?

An <u>ordered</u> sequence of values of a variable at equally spaced time intervals.

What is Time Series Data?

Time Series Data can be used for forcasting when values are <u>related</u>.

There are 4 types/patterns of <u>related</u> Time Series Data

Patterns Exhibited by Time Series

The data, which include random error, are in blue and the forecast models fitted to the data are in orange.

Is Time Series Data always related?

Is Time Series Data always related?

How do we deal with noise?

Noise can be filtered or smoothed.

How do we deal with noise?

Filtering

We can likewise subtract the seasonal or periodic trend from the data, leaving a d trended process.

Is this a random process? (can we replicate it by just sampling from a known distribution?)

How do we deal with noise?

Smoothing

A form of filtering which produces a time series in which the importance of the spectral components at high frequencies is reduced. Electrical engineers call this type of filter a <u>low-pass filter</u>, because the low-frequency variations are allowed to "pass through" the filter. In a low-pass filter, the low frequency (long-period) waves are barely affected by the smoothing.

Time Series Data Examples

- Logs
- Metrics
- Financial Data
- Sensor Data
- Logistics Tracking
- Weather Data
- etc.

Time Series data has 3 characterisitcs

1. Time-centric data

Capturing and analyzing measurements/events over time.

2. Primarily INSERTS

 Workloads generally write new data. Rarely update.

3. Writes to recent interval

 Data generally written to most recent time interval (although delays possible).

Simple example of time series data

- Tags Host=Name,Region=West
- Data 1990-01-01 01:02:00 1990-01-01 01:03:00 1990-01-01 01:04:00 1990-01-01 01:04:00 1990-01-01 01:04:00

CPU	MemFree	Temp
70	800M	80
71	600M	81
72	400M	82
73	200M	83
100	0	120

So can we use traditional RDBMS?

Yes

Till some point

So can we use traditional RDBMS?

Example from server monitoring

- 2,000 servers, VMs, containers, or sensor units
- 1,000 measurements per server/unit
- every 10 seconds
- = 17,280,000,000 distinct points per day

So can we use traditional RDBMS?

25GB data collected per hour by connected cars (McKinsey)

"Our Boeing 787s generate half a terabyte of data per flight"

- Virgin Atlantic IT director

Scaling

Fast range queries

Compression

Downsampling (summaries) Timestamp as index

Aging out data

When Time Series DBs are **not** needed?

Not time series data.

Weak Join functionality?!

Text agregation.

Updates are expensive.

1 line reads. Range is better.

Other NoSQLs can do that. Why do we still need Time Series DBs?

Influx Data compared compared their TSDB with Cassandra, MongoDB and HBase

Influx Data vs others

TSDBs require less development effort.

TSDBs do not require special CRUD API.

Influx Data TSDB does not require additional monitoring, alerting and visualization tools.

Influx Data TSDB vs ElasticSearch

Influx Data TSDB vs MongoDB

Influx Data TSDB vs Cassandra

I had to check simple scenario: InfluxDB vs. Elasticsearch

- 1. Find ready to use docker images
- 2. Use the simplest tutorials, without any hacks that improve performance
- 3. Write simple rows with random numbers and timestamps
- 4. Use jMeter to write data in 4 threads 50_000 inserts each
- 5. On the same machine (my laptop)
- 6. Reboot machine before every test
- 7. Measure results

Create DB curl -XPOST http://localhost:8086/query --data-urlencode "q=CREATE DATABASE mydb"

Insert data curl -i -XPOST 'http://localhost:8086/write?db=mydb&precision=ms' \ --data 'kinda,tag=test,thread=1 randomValue=42 1537701253843'

Elasticsearch API

Create DB # Meh

Insert data
curl -XPOST http://localhost:9200/mydb/kinda \
 -H 'Content-Type: application/json' \
 --data '{"tag":"test", "thread":1, "randomValue":42, \
 "timestamp":1537701253843'}'

Results ...

Results (Use 4 threads to insert 50_000 records each)

	Elasticsearch	InfluxDB
Avg write/s	548	1132
Avg write ms	7	3
Total duration m	06:04	02:56

References

- 1. What the heck is time-series data? <u>https://www.youtube.com/watch?v=7hxXU9dceaE</u>
- 2. Time Series Analysis -

https://www.youtube.com/watch?v=Prpu_U5tKkE

- 3. Time Series Database Lectures #1 !! https://www.youtube.com/watch?v=2SUBRE6wGiA
- 4. List of Time Series Data Bases https://misfra.me/2016/04/09/tsdb-list/
- 5. Time Series DBs vs. other DBs https://www.influxdata.com/time-series-database/
- 6. Really? https://github.com/alex-d-bondarev/learn-timescale

