
datastructur.es

Implements vs. Extends

On Monday, a student asked after class “how do you know whether to use
implements or extends?”

Somehow I didn’t explicitly mention the difference between “implements” and
“extends” during lecture.

● You must use “implements” if the hyperym is an interface and the hyponym
is a class (e.g. hypernym List, hyponym AList).

● You must use “extends” in all other cases.

There’s no choice that you have to make, the Java designers just picked a
different keyword for the two cases.

http://datastructur.es

datastructur.es

Announcements

Reminder drop deadline is today.

● If you are not done with project 1A, you are in deep danger.

Come to lab this week.

● Requires checkoff (last one until week 14).

http://datastructur.es

CS61B

Lecture 10: Subtype Polymorphism vs. HoFs
● Dynamic Method Selection Puzzle
● Subtype Polymorphism vs. Explicit HoFs
● Application 1: Comparables
● Application 2: Comparators

Dynamic Method Selection
Puzzle (Online Only)

datastructur.es

A Typing Puzzle

Suppose we have two classes:

● Dog: Implements bark() method.
● ShowDog: Extends Dog, overrides bark method.

Summarizing is-a relationships, we have:

● Every ShowDog is-a Dog
● Every Dog is-an Object.

○ All types in Java are a subtype of Object.

Dog

ShowDog

Object

bark()

bark()

http://datastructur.es

datastructur.es

A Typing Puzzle

For each assignment, decide if it causes a compile error.

For each call to bark, decide whether: 1. Dog.bark() is called, 2. ShowDog.bark()
is called, or 3. A syntax error results.

The rules:
● Compiler allows memory box to hold any subtype.
● Compiler allows calls based on static type.
● Overridden non-static methods are selected at

run time based on dynamic type.
○ Everything else is based on static type,

including overloaded methods. Note: No
overloaded methods for problem at left.

http://datastructur.es
https://docs.google.com/presentation/d/128PmKI2zpI4pi21_sQxAgeLj7eF3dJzoLciJea4W37A/edit#slide=id.g6292bcebc_9247

datastructur.es

A Typing Puzzle

Variable or
expression

Static Type Dynamic Type

o2 Object ShowDog

sdx ShowDog ShowDog

dx Dog ShowDog

((Dog) o2) Dog ShowDog

o3 Object ShowDog

Showdog’s bark

ShowDog’s bark

ShowDog’s bark

String s = “35”;
Integer x = (Integer) s; // THIS CAST WILL FAIL
x.floatValue()

http://datastructur.es

datastructur.es

A Typing Puzzle

String s = “35”;
Integer x = (Integer) s; // THIS CAST WILL CAUSE A COMPILE ERROR
x.floatValue()

String Integer

Object

Number

Number x = new Double(3.5);
Integer z = (Integer) x; // this cast is OK at compile time
 // Josh what it would do at runtime. It’s a little weird.

http://datastructur.es

datastructur.es

A Typing Puzzle

For each assignment, decide if it causes a compile error.

For each call to bark, decide whether: 1. Dog.bark() is called, 2. ShowDog.bark()
is called, or 3. A syntax error results.

Showdog’s bark

ShowDog’s bark
Object ShowDog

Static Type Dynamic Type

o2

ShowDog ShowDog

Dog ShowDog

sdx

dx

Object

ShowDog

Dog

ShowDog:
● Mortimer
● Corgi
● 25
● 512.2

Dog

((Dog) o2) Dog ShowDog

http://datastructur.es

datastructur.es

Static Type vs. Dynamic Type

Every variable in Java has a “compile-time type”, a.k.a. “static type”.

● This is the type specified at declaration. Never changes!

Variables also have a “run-time type”, a.k.a. “dynamic type”.

● This is the type specified at instantiation (e.g. when using new).
● Equal to the type of the object being pointed at.

LivingThing Squid

Static Type Dynamic Type

lt1

Animal Fox

Fox Fox

a1

h1

LivingThing

Animal

Fox

http://datastructur.es

datastructur.es

Static Methods, Variables, and Inheritance

You may find questions on old 61B exams, worksheets, etc. that consider:

● What if a subclass has variables with the same name as a superclass?
● What if subclass has a static method with the same signature as a

superclass method?
○ For static methods, we do not use the term overriding for this.

These two practices above are called “hiding”.

● It is bad style.
● There is no good reason to ever do this.
● The rules for resolving the conflict are a bit confusing to learn.
● I decided last year to stop teaching it in 61B.
● But if you want to learn it, see

https://docs.oracle.com/javase/tutorial/java/IandI/override.html

http://datastructur.es
https://docs.oracle.com/javase/tutorial/java/IandI/override.html

Subtype Polymorphism

datastructur.es

Subtype Polymorphism

The biggest idea of the last couple of lectures: Subtype Polymorphism

● Polymorphism: “providing a single interface to entities of different types”

Consider a variable deque of static type Deque:

● When you call deque.addFirst(), the actual behavior is based on the
dynamic type.

● Java automatically selects the right behavior using what is sometimes called
“dynamic method selection”.

Curious about alternatives to subtype polymorphism? See wiki or CS164.

http://www.stroustrup.com/glossary.html#Gpolymorphism

a.k.a. compile-time type

a.k.a. run-time type

http://datastructur.es
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://www.stroustrup.com/glossary.html#Gpolymorphism

datastructur.es

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
larger of two objects.

def print_larger(x, y, compare, stringify):

 if compare(x, y):

 return stringify(x)

 return stringify(y)

Explicit
HoF

Approach

def print_larger(x, y):

 if x.largerThan(y):

 return x.str()

 return y.str()

Subtype
Polymorphism

Approach

Sometimes called a “callback”.

Not to be confused
with the amazing Dr.
Ernest Kaulbach,
who taught my Old
English class.

http://datastructur.es
https://markroylong.wordpress.com/2014/01/14/great-moments-in-learning-2-brevity-is-the-soul-of-writing-andor-wit/#more-311
https://markroylong.wordpress.com/2014/01/14/great-moments-in-learning-2-brevity-is-the-soul-of-writing-andor-wit/#more-311

DIY Comparison

datastructur.es

shoutkey.com/TBA

Suppose we want to write a function max() that returns the max of any array,
regardless of type.

max5 3 1 7
0 1 2 3

0 1 2

7

max

Sture
9 lbs Benjamin

15 lbs
Elyse
3 lbs

http://datastructur.es

datastructur.es

yellkey.com/left

Suppose we want to write a function max() that returns the max of any array,
regardless of type. How many compilation errors are there in the code shown?

A. 0
B. 1
C. 2
D. 3

public static Object max(Object[] items) {
 int maxDex = 0;
 for (int i = 0; i < items.length; i += 1) {

if (items[i] > items[maxDex]) {
 maxDex = i; }}
 return items[maxDex];
}
public static void main(String[] args) {
 Dog[] dogs = {new Dog("Elyse", 3), new Dog("Sture", 9),
 new Dog("Benjamin", 15)};
 Dog maxDog = (Dog) max(dogs);
 maxDog.bark();
}

Maximizer.java

DogLauncher.java

http://datastructur.es

datastructur.es

Writing a General Max Function

Objects cannot be compared to other objects with >

● One (bad) way to fix this: Write a max method in the Dog class.

public static Object max(Object[] items) {
 int maxDex = 0;
 for (int i = 0; i < items.length; i += 1) {

if (items[i] > items[maxDex]) {
 maxDex = i; }}
 return items[maxDex];
}
public static void main(String[] args) {
 Dog[] dogs = {new Dog("Elyse", 3), new Dog("Sture", 9),
 new Dog("Benjamin", 15)};
 Dog maxDog = (Dog) max(dogs);
 maxDog.bark();
}

and give up on our dream
of a one true max function

Maximizer.java

DogLauncher.java

http://datastructur.es

datastructur.es

Dog.maxDog

One approach to maximizing a Dog array: Leave it to the Dog class.

● What is the disadvantage of this?

/** Returns maximum of dogs. */
public static Dog maxDog(Dog[] dogs) {
 if (dogs == null || dogs.length == 0) {
 return null; }
 Dog maxDog = dogs[0];
 for (Dog d : dogs) {
 if (d.size > maxDog.size) {
 maxDog = d; }}

return maxDog;
} Dog[] dogs = new Dog[]{d1, d2, d3};

Dog largest = Dog.maxDog(dogs);

http://datastructur.es

datastructur.es

The Fundamental Problem

Objects cannot be compared to other objects with >

● How could we fix our Maximizer class using inheritance / HoFs?

public static Object max(Object[] items) {
 int maxDex = 0;
 for (int i = 0; i < items.length; i += 1) {

if (items[i] > items[maxDex]) {
 maxDex = i; }}
 return items[maxDex];
}
public static void main(String[] args) {
 Dog[] dogs = {new Dog("Elyse", 3), new Dog("Sture", 9),
 new Dog("Benjamin", 15)};
 Dog maxDog = (Dog) max(dogs);
 maxDog.bark();
}

Maximizer.java

DogLauncher.java

http://datastructur.es

datastructur.es

Solution

Create an interface that guarantees a comparison method.

● Have Dog implement this interface.
● Write Maximizer class in terms of this interface.

public static OurComparable max(OurComparable[] items) { ...

OurComparable
compareTo(Object)

Dog
compareTo(Object)

interface inheritance says what a
class can do, in this case compare.

http://datastructur.es

datastructur.es

The OurComparable Interface

Specification, returns:

● Negative number if this is less than obj.
● 0 if this is equal to object.
● Positive number if this is greater than obj.

public interface OurComparable {
 int compareTo(Object obj);
}

Could have also been
OurComparable. No
meaningful difference.

http://datastructur.es

datastructur.es

General Maximization Function Through Inheritance

public interface OurComparable {
 int compareTo(Object obj);
}

public class Dog implements OurComparable {
public int compareTo(Object obj) {

 /** Warning, cast can cause runtime error! */
 Dog uddaDog = (Dog) obj;
 return this.size - uddaDog.size;
 } ...

public class Maximizer {
public static OurComparable max(OurComparable[] a) {
...

} Dog[] dogs = new Dog[]{d1, d2, d3};
Dog largest = (Dog) Maximizer.max(dogs);

http://datastructur.es
http://www.ehuandkai.com/

datastructur.es

General Maximization Function Through Inheritance

Benefits of this approach:

● No need for array maximization code in every custom type (i.e. no
Dog.maxDog(Dog[]) function required).

● Code that operates on multiple types (mostly) gracefully, e.g.

OurComparable[] objs = getItems(“somefile.txt”);
return Maximizer.max(objs);

http://datastructur.es

datastructur.es

public class Dog
implements OurComparable {
 ...
 public int compareTo(Object o) {
 Dog uddaDog = (Dog) o;
 return this.size
 - uddaDog.size;
 } ...

Interfaces Quiz #1: yellkey.com/baby

Q: If we omit compareTo(), which file will
fail to compile?

A. DogLauncher.java
B. Dog.java
C. Maximizer.java
D. OurComparable.java

public class DogLauncher {
 public static void main(String[] args) {
 ...
 Dog[] dogs = new Dog[]{d1, d2, d3};
 System.out.println(Maximizer.max(dogs));
 }
}

public class Maximizer {
 public static OurComparable max(
 OurComparable[] items) {
 ...
 int cmp = items[i].
 compareTo(items[maxDex]);
 ...
 }...

http://datastructur.es

datastructur.es

public class Dog
implements OurComparable {
 ...
 public int compareTo(Object o) {
 Dog uddaDog = (Dog) o;
 return this.size
 - uddaDog.size;
 } ...

Interfaces Quiz #2: yellkey.com/itself

Q: If we omit implements OurComparable,
which file will fail to compile?

A. DogLauncher.java
B. Dog.java
C. Maximizer.java
D. OurComparable.java

public class DogLauncher {
 public static void main(String[] args) {
 ...
 Dog[] dogs = new Dog[]{d1, d2, d3};
 System.out.println(Maximizer.max(dogs));
 }
}

public class Maximizer {
 public static OurComparable max(
 OurComparable[] items) {
 ...
 int cmp = items[i].
 compareTo(items[maxDex]);
 ...
 }...

http://datastructur.es

datastructur.es

Answers to Quiz

Problem 1: Dog will fail to compile because it does not implement all abstract
methods required by OurComparable interface. (And I suppose DogLauncher
will fail as well since Dog.class doesn’t exist)

Problem 2: DogLauncher will fail, because it tries to pass things that are not
OurComparables, and Maximizer expects OurComparables.

http://datastructur.es

Comparables

datastructur.es

The Issues With OurComparable

Two issues:

● Awkward casting to/from Objects.
● We made it up.

○ No existing classes implement OurComparable (e.g. String, etc).
○ No existing classes use OurComparable (e.g. no built-in max function

that uses OurComparable)

public class Dog implements OurComparable {
public int compareTo(Object obj) {

 /** Warning, cast can cause runtime error! */
 Dog uddaDog = (Dog) obj;
 return this.size - uddaDog.size;
 } ...

Dog[] dogs = new Dog[]{d1, d2, d3};
Dog largest = (Dog) Maximizer.max(dogs);

http://datastructur.es
http://www.ehuandkai.com/

datastructur.es

The Issues With OurComparable

Two issues:

● Awkward casting to/from Objects.
● We made it up.

○ No existing classes implement OurComparable (e.g. String, etc).
○ No existing classes use OurComparable (e.g. no built-in max function

that uses OurComparable)

The industrial strength approach: Use the built-in Comparable interface.

● Already defined and used by tons of libraries. Uses generics.

public interface Comparable<T> {
 public int compareTo(T obj);
}

public interface OurComparable {
 public int compareTo(Object obj);
}

http://datastructur.es

datastructur.es

Comparable vs. OurComparable

Comparable<Dog>
compareTo(Dog)

Dog
compareTo(Dog)

OurComparable
compareTo(Object)

Dog
compareTo(Object)

http://datastructur.es

datastructur.es

Comparable Advantages

● Lots of built in classes implement Comparable (e.g. String).
● Lots of libraries use the Comparable interface (e.g. Arrays.sort)
● Avoids need for casts.

public class Dog implements Comparable<Dog> {
public int compareTo(Dog uddaDog) {

 return this.size - uddaDog.size;
}

public class Dog implements OurComparable {
public int compareTo(Object obj) {

 Dog uddaDog = (Dog) obj;
 return this.size - uddaDog.size;
 } ...

Much better!

Dog[] dogs = new Dog[]{d1, d2, d3};
Dog largest = Collections.max(Arrays.asList(dogs));

Implementing Comparable
allows library functions to
compare custom types
(e.g. finding max).

http://datastructur.es

Comparators

datastructur.es

Natural Order

The term “Natural Order” is sometimes used to refer to the ordering implied by
a Comparable’s compareTo method.

● Example: Dog objects (as we’ve defined them) have a natural order given by
their size.

“Doge”, size: 5
“Grigometh”, size: 200 “Clifford”, size: 9000

http://datastructur.es

datastructur.es

Natural Order

“Grigometh”, size: 200

May wish to order objects in a different way.

● Example: By Name.

“Doge”, size: 5

“Clifford”, size: 9000

http://datastructur.es

datastructur.es

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
larger of two objects according to some specific comparison function.

def print_larger(x, y, compare, stringify):

 if compare(x, y):

 return stringify(x)

 return stringify(y)

Explicit
HoF

Approach

def print_larger(T x, T y):

 if x.largerThan(y):

 return x.str()

 return y.str()

Subtype
Polymorphism
Approach??

Can simply pass a
different compare
function.

http://datastructur.es

datastructur.es

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
larger of two objects according to some specific comparison function.

def print_larger(x, y, compare, stringify):

 if compare(x, y):

 return stringify(x)

 return stringify(y)

Explicit
HoF

Approach

def print_larger(T x, T y, comparator<T> c):

 if c.compare(x, y):

 return x.str()

 return y.str()

Subtype
Polymorphism

Approach

Can simply pass a
different compare
function.

http://datastructur.es

datastructur.es

Additional Orders in Java

In some languages, we’d write two comparison functions and simply pass the
one we want :

● sizeCompare()
● nameCompare()

The standard Java approach: Create sizeComparator and nameComparator
classes that implement the Comparator interface.

● Requires methods that also take Comparator arguments (see project 1B).

public interface Comparator<T> {
int compare(T o1, T o2);

}

http://datastructur.es

datastructur.es

Dogs and Comparators

compare(T, T)
Comparator<T>

compare(Dog,
Dog) NameComparator

Dog

Dog not related by inheritance
to any of the classes below.

public interface Comparator<T> {
int compare(T o1, T o2);

}

compare(Dog,
Dog) SizeComparator

http://datastructur.es

datastructur.es

Example: NameComparator

public class Dog implements Comparable<Dog> {
 private String name;
 private int size;

 public static class NameComparator implements Comparator<Dog> {

public int compare(Dog d1, Dog d2) {
 return d1.name.compareTo(d2.name);

}
 }
 ...
}

Comparator<Dog> cd = new Dog.NameComparator();
if (cd.compare(d1, d3) > 0) {
 d1.bark();
} else {
 d3.bark();
}

Result: If d1 has a name that comes
later in the alphabet than d3, d1 barks.

http://datastructur.es

datastructur.es

Comparable and Comparator Summary

Interfaces provide us with the ability to make callbacks:

● Sometimes a function needs the help of another function that might not
have been written yet.
○ Example: max needs compareTo
○ The helping function is sometimes called a “callback”.

● Some languages handle this using explicit function passing.
● In Java, we do this by wrapping up the needed function in an interface (e.g.

Arrays.sort needs compare which lives inside the comparator
interface)

● Arrays.sort “calls back” whenever it needs a comparison.
○ Similar to giving your number to someone if they need information.
○ See Project 1B to explore how to write code that uses comparators.

http://datastructur.es

