Implements vs. Extends

On Monday, a student asked after class “how do you know whether to use
implements or extends?”

Somehow | didn’t explicitly mention the difference between “implements” and
“extends” during lecture.

® You must use “implements” if the hyperym is an interface and the hyponym
is a class (e.g. hypernym List, hyponym AlList).
® You must use “extends” in all other cases.

There’s no choice that you have to make, the Java designers just picked a
different keyword for the two cases.

http://datastructur.es

Announcements

Reminder drop deadline is today.
e If you are not done with project 1A, you are in deep danger.

Come to lab this week.
® Requires checkoff (last one until week 14).

http://datastructur.es

CS61B

Lecture 10: Subtype Polymorphism vs. HoFs
e Dynamic Method Selection Puzzle

e Subtype Polymorphism vs. Explicit HoFs
e Application 1: Comparables

e Application 2: Comparators

Dynamic Method Selection
Puzzle (Online Only)

A Typing Puzzle

Suppose we have two classes:

e Dog: Implements bark() method.
e ShowDog: Extends Dog, overrides bark method.

Summarizing is-a relationships, we have:

e Every ShowDog is-a Dog
® Every Dogis-an Object.
o All types in Java are a subtype of Object.

Object
bark() Dog
bark() | ShowDog

http://datastructur.es

A Typing Puzzle

For each assignment, decide if it causes a compile error.

For each call to bark, decide whether: 1. Dog.bark() is called, 2. ShowDog.bark()
is called, or 3. A syntax error results.

Object 02 = new ShowDog("Mortimer", "Corgi", 25, 512.2);

ShowDog sdx = ((ShowDog) 02);
sdx.bark(); The rules:

Do di = CCDoGY: 0253 e Compiler allows memory box to hold any subtype.

dx.bark(): e Compiler allows calls based on static type.
e Overridden non-static methods are selected at
((Dog) 02).bark(Q); run time based on dynamic type.
. o Everything else is based on static type,
Object o3 = (Dog) oZ; including overloaded methods. Note: No
03.bark();

overloaded methods for problem at left. s

http://datastructur.es
https://docs.google.com/presentation/d/128PmKI2zpI4pi21_sQxAgeLj7eF3dJzoLciJea4W37A/edit#slide=id.g6292bcebc_9247

A Typing Puzzle

String s = “35%;
Integer x = (Integer) s; // THIS CAST WILL FAIL
x.floatValue()

/Object 02 = new ShowDog("Mortimer", "Corgi", 25, 512.2);

xj/howDog sdx = ((ShowDog) 02);
sdx.bark(); showdog’s bark

»609 dx = ((Dog) 02);
Jdx. bark(); ShowDog’s bark

/((Dog) 02) .bark(); ShowDog’s bark

Object 03 =
><p3.bark();

Variable or Static Type Dynamic Type
expression

02 Object ShowDog

sdx ShowDog ShowDog

dx Dog ShowDog

((Dog) 02) Dog ShowDog

03 Object ShowDog e

([@lolEle]

http://datastructur.es

A Typing Puzzle

String s = “35%;

Integer x = (Integer) s; // THIS CAST WILL CAUSE A COMPILE ERROR

x.floatValue()

Object

String

Number x = new Double(3.5);

I

Number

N

Integer

Integer z = (Integer) x; // this cast is OK at compile time
I/l Josh what it would do at runtime. It's a little weird.

datastructur.es

http://datastructur.es

A Typing Puzzle

For each assignment, decide if it causes a compile error.
For each call to bark, decide whether: 1. Dog.bark() is called, 2. ShowDog.bark()

is called, or 3. A syntax error results.
/Object 02 = new ShowDog("Mortimer", "Corgi", 25, 512.2);

xj/howDog sdx = ((ShowDog) 02);
sdx.bark(); showdog’s bark

Static Type Dynamic Type
»609 dx = ((Dog) 02); ShowDog: /; A Object ShowDog
dx.bark(); ShowDog’s bark e Mortimer
* Corg % +5d\xgg\ ShowDog ShowDog
Dog) 02).bark(); ¢ 25 " "
((Dog) 02).bark(); -2 BN
Object 03 = (Dog) 02; dx > Dog ShowDog
03.bark < Dog
ark(Q); ((Dog) 02) S Dog

http://datastructur.es

Static Type vs. Dynamic Type

Every variable in Java has a “compile-time type”, a.k.a. “static type”.
e This is the type specified at declaration. Never changes!

Variables also have a “run-time type”, a.k.a. “dynamic type”.

e This is the type specified at instantiation (e.g. when using new).
e Equal to the type of the object being pointed at.

Static Type Dynamic Type
1t1 T LivingThing | Squid
§ al o Animal Fox
N
— % Ni/ Fox Fox

http://datastructur.es

Static Methods, Variables, and Inheritance

You may find questions on old 61B exams, worksheets, etc. that consider:

e \What if a subclass has variables with the same name as a superclass?
e \What if subclass has a static method with the same signature as a
superclass method?
o For static methods, we do not use the term overriding for this.

These two practices above are called “hiding”.

® |Itis bad style.

There is no good reason to ever do this.

The rules for resolving the conflict are a bit confusing to learn.

| decided last year to stop teaching it in 61B.

But if you want to learn it, see
https://docs.oracle.com/javase/tutorial/java/landl/override.html

http://datastructur.es
https://docs.oracle.com/javase/tutorial/java/IandI/override.html

Subtype Polymorphism

Subtype Polymorphism

The biggest idea of the last couple of lectures: Subtype Polymorphism

e Polymorphism: “providing a single interface to entities of different types”

/ a.k.a. compile-time type

Consider a variable deque of static type Deque:

e When you call deque.addFirst(), the actual behavior is based on the
dynamic type. a.k.a. run-time type

e Java automatically selects the right behavior using what is sometimes called
“dynamic method selection”.

Curious about alternatives to subtype polymorphism? See wiki or CS164.

http://www.stroustrup.com/glossary.html#Gpolymorphism

http://datastructur.es
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://www.stroustrup.com/glossary.html#Gpolymorphism

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
Iarger of two ObJECtS' Sometimes called a “callback”.

def print_larger(x, y, compare, stringify):
Eﬁﬂft if compare(x, y):
Approach return stringify(x)

return stringify(y)

. Not to be confused
def print_larger(x, y): with the amazing Dr.

Subtype if x.largerThan(y): Ernest Kaulbach,
Polymorphism who taught my Old

Approach return x.str() English class.
return y.str()

http://datastructur.es
https://markroylong.wordpress.com/2014/01/14/great-moments-in-learning-2-brevity-is-the-soul-of-writing-andor-wit/#more-311
https://markroylong.wordpress.com/2014/01/14/great-moments-in-learning-2-brevity-is-the-soul-of-writing-andor-wit/#more-311

DIY Comparison

shoutkey.com/TBA

Suppose we want to write a function max () that returns the max of any array,
regardless of type.

3 1 { > max — | 7

P
L

Benjamin
15 Ibs

datast

ructur.es
QO8O

http://datastructur.es

yellkey.com/left

Suppose we want to write a function max () that returns the max of any array,
regardless of type. How many compilation errors are there in the code shown?

A.

B.
C.
D

0

1
2
3

public static Object |max(Object[] items)| {

int maxDex = 0;

for (int i = 0; i < items.length; i += 1) {
if |(items[i] > items[maxDex]) {

maxDex = 1; 1}

return items[maxDex];
} Maximizer.java
public static void main(String[] args) {

Dog[] dogs = {new Dog(, 3), new Dog(, 9),

new Dog(, 15)};
Dog maxDog = |[(Dog) max(dogs);
maxDog.bark();

}

DogLauncher.java .
DO

http://datastructur.es

and give up on our dream

Writing d General MaX FunCtion of a one true max function
Objects cannot be compared to other objects with > \
® One (bad) way to fix this: Write a max method in the Dog class.
public static Object max(Object[] items) {
int maxDex = 0;
for (int i = 0; i < items.length; i += 1) {
if [(items[i] > items[maxDex])| {
maxDex = 1; 1}
return items[maxDex];
} Maximizer.java
public static void main(String[] args) {
Dog[] dogs = {new Dog(, 3), new Dog(, 9),
new Dog(, 15)};
Dog maxDog = (Dog) max(dogs);
maxDog.bark();
} DoglLauncher. java-
")

http://datastructur.es

Dog.maxDog

One approach to maximizing a Dog array: Leave it to the Dog class.
e What is the disadvantage of this?

/** Returns maximum of dogs. */
public static Dog maxDog(Dog[] dogs) {
if (dogs == null || dogs.length == 0) {
return null; }
Dog maxDog = dogs[0];
for (Dog d : dogs) {
if (d.size > maxDog.size) {
maxDog = d; 1}
return maxDog;
} Dog[] dogs = new Dog[]{dl, d2, d3};
Dog largest = Dog.maxDog(dogs);

tttttttttttttt

http://datastructur.es

The Fundamental Problem

Objects cannot be compared to other objects with >

e How could we fix our Maximizer class using inheritance / HoFs?

public static Object max(Object[] items) {
int maxDex = 0;
for (int i = 0; i < items.length; i += 1) {
if [(items[i] > items[maxDex])| {

maxDex = 1; 1}

return items[maxDex];
} Maximizer.java
public static void main(String[] args) {

Dog[] dogs = {new Dog(, 3), new Dog(, 9),

new Dog(, 15)};
Dog maxDog = (Dog) max(dogs);
maxDog.bark();

} DogLauncher.java .
DO

http://datastructur.es

. interface inheritance says what a
SOlUtIOrI class can do, in this case compare.

Create an interface that guarantees a comparison method.

e Have Dog implement this interface.
e \Write Maximizer class in terms of this interface.

public static OurComparable max(OurComparable[] items) { ...

OurComparable
compareTo(Object)
Dog
compareTo(Object)

datastructur.es

[@0cie

http://datastructur.es

The OurComparable Interface

public interface OurComparable {
int compareTo(Object obj);

}
Could have also been
L OurComparable. No
Specification, returns: meaningful difference.

e Negative number if this is less than obj.
e 0 if this is equal to object.
e Positive number if this is greater than obj.

http://datastructur.es

General Maximization Function Through Inheritance

public interface OurComparable {
int compareTo(Object obj);

}

public class Dog implements OurComparable {
public int compareTo(Object obj) {
/** Warning, cast can cause runtime error! */
Dog uddaDog = (Dog) obj;
return this.size - uddaDog.size;

b

public class Maximizer {
public static OurComparable max(OurComparable[] a) {

} o Dog[] dogs = new Dog[]{d1l, d2, d3};

Dog largest = (Dog) Maximizer.max(dogs);

http://datastructur.es
http://www.ehuandkai.com/

General Maximization Function Through Inheritance

Benefits of this approach:

e No need for array maximization code in every custom type (i.e. no
Dog.maxDog(Dog[]) function required).
e Code that operates on multiple types (mostly) gracefully, e.g.

OurComparable[] objs = getItems(“somefile.txt”);
return Maximizer.max(objs);

http://datastructur.es

Interfaces Quiz #1: yellkey.com/baby

public class DoglLauncher {

public static void main(String[] args) {

Dog[] dogs = new Dog[]{d1l, d2, d3};
System.out.println(Maximizer.max(dogs));

}
}

public class Dog
implements OurComparable {

blic int compareTo(Object
Do = (Do 3

- uddaDog.

Q: If we omit compareTo(), which file will

fail to compile?

. DoglLauncher.java
Dog. java
Maximizer.java

. OurComparable.java

O N W >

public class Maximizer {
public static OurComparable max(
OurComparable[] items) {

int cmp = items[i].
compareTo(items[maxDex]);

datastructur.es

[@ocie

http://datastructur.es

Interfaces Quiz #2: yellkey.com/itself

public class DoglLauncher {

}

public static void main(String[] args) {

Dog[] dogs = new Dog[]{d1l, d2, d3};
System.out.println(Maximizer.max(dogs));

}

ublic class Dog
Eﬁﬂzﬁﬁmyfmq;mEEﬂﬁgi_

public int compareTo(Object o) {
Dog uddabDog = (Dog) o;
return this.size
- uddaDog.size;

...

Q: If we omit implements OurComparable,
which file will fail to compile?

O N W >

DoglLauncher. java
Dog. java
Maximizer.java
OurComparable.java

public class Maximizer {
public static OurComparable max(
OurComparable[] items) {

int cmp = items[i].
compareTo(items[maxDex]);

datastructur.es

http://datastructur.es

Answers to Quiz

Problem 1: Dog will fail to compile because it does not implement all abstract
methods required by OurComparable interface. (And | suppose DoglLauncher
will fail as well since Dog.class doesn’t exist)

Problem 2: DoglLauncher will fail, because it tries to pass things that are not
OurComparables, and Maximizer expects OurComparables.

http://datastructur.es

Comparables

The Issues With OurComparable

Two issues:

e Awkward casting to/from Objects.
e \We made it up.
o No existing classes implement OurComparable (e.g. String, etc).
o No existing classes use OurComparable (e.g. no built-in max function
that uses OurComparable)

public class Dog implements OurComparable {
public int compareTo(Object obj) {
/** Warning, cast can cause runtime error! */
Dog uddaDog = (Dog) obj;
return this.size - uddaDog.size;

Dog[] dogs = new Dog[]{d1l, d2, d3};
Dog largest = (Dog) Maximizer.max(dogs);

http://datastructur.es
http://www.ehuandkai.com/

The Issues With OurComparable

Two issues:

e Awkward casting to/from Objects.

e \We made it up.

o No existing classes implement OurComparable (e.g. String, etc).
o No existing classes use OurComparable (e.g. no built-in max function

that uses OurComparable)

The industrial strength approach: Use the built-in Comparable interface.

e Already defined and used by tons of libraries. Uses generics.

public interface Comparable<T> {
public int compareTo(T obj);

}

public interface OurComparable {

public int compareTo(Object obj);

}

U

http://datastructur.es

Comparable vs. OurComparable

OurComparable
compareTo(Object)
Dog
compareTo(Object)

Comparable<Dog>
compareTo(Dog)
Dog
compareTo(Dog)

datastructur.es

[@0cie

http://datastructur.es

Comparable Advantages

® Lots of built in classes implement Comparable (e.g. String).

® Lots of libraries use the Comparable interface (e.g. Arra
® Avoids need for casts.

ys.sort)

public class Dog implements Comparable<Dog> {
public int compareTo(Dog uddaDog) {
return this.size - uddaDog.size;

¥

<— Much better!

public class Dog implements OurComparable {
public int compareTo(Object obj) {
Dog uddaDog = (Dog) obj;
return this.size - uddaDog.size;

Implementing Comparable
allows library functions to

compare custom types
(e.g. finding max).

Dog[] dogs = new Dog[]{d1l, d2, d3};

Dog largest = Collections.max(Arrays.aslList(dogs));

http://datastructur.es

Comparators

Natural Order

The term “Natural Order” is sometimes used to refer to the ordering implied by
a Comparable’s compareTo method.

e Example: Dog objects (as we’ve defined them) have a natural order given by
their size.

L _,//)
VS i 2

¢
— y

“‘Doge’, size: 5

“Grigometh”; size: 200 “Clifford”, size: 9000 atastructures

http://datastructur.es

Natural Order

May wish to order objects in a different way.

e Example: By Name.

“‘Doge’, size: 5

“Grigometh”, size: 200

“ H ” H . datastructur.es
Clifford”, size: 9000

http://datastructur.es

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
larger of two objects according to some specific comparison function.

def print_larger(x, y, compare, stringify):
Eﬁﬂ?“ if compare(x, y):
Approach return stringify(x)
return stringify(y)
def print_larger(T x, T y): Can simply pass a
Subtype if x.largerThan(y): ﬂﬂi@ﬁcmnmﬂe

Polymorphism

Approach?? return x.str()

return y.str()

http://datastructur.es

Subtype Polymorphism vs. Explicit Higher Order Functions

Suppose we want to write a program that prints a string representation of the
larger of two objects according to some specific comparison function.

Explicit
HoF
Approach

def print_larger(x, y, compare, stringify):
if compare(x, y):
return stringify(x)
return stringify(y)

Subtype
Polymorphism
Approach

return y.str()

O

def print_larger(T x, T y, comparator<T> c): |Cansimplypassa

different compare

if c.compare(x, y): function.

return x.str()

http://datastructur.es

Additional Orders in Java

In some languages, we’d write two comparison functions and simply pass the
one we want :

® sizeCompare()
e nameCompare()

The standard Java approach: Create sizeComparator and nameComparator
classes that implement the Comparator interface.

® Requires methods that also take Comparator arguments (see project 1B).

public interface Comparator<T> {
int compare(T 01, T 02);

http://datastructur.es

Dogs and Comparators

public interface Comparator<T> {

int compare(T o0l1l, T 02);

compare(T, T)

Comparator<T>

Dog not related by inheritance
to any of the classes below.

Dog

,//’////////"\\\\\\\\\\\\\‘\~\‘

compare(Dog,
Dog)

NameComparator

compare(Dog,
Dog)

SizeComparator

datastructur.es

[@0cie

http://datastructur.es

Example: NameComparator

public class Dog implements Comparable<Dog> {
private String name;

private int size;

public static class NameComparator implements Comparator<Dog> {
public int compare(Dog d1, Dog d2) {
return dl.name.compareTo(d2.name);

}
}
c o Comparator<Dog> cd = new Dog.NameComparator();
} if (cd.compare(dl, d3) > 0) {
dl.bark();
} else { Result: If d1 has a name that comes
d3.bark(); later in the alphabet than d3, d1 barks.

}

sssssssssss

http://datastructur.es

Comparable and Comparator Summary

Interfaces provide us with the ability to make callbacks:

® Sometimes a function needs the help of another function that might not
have been written yet.
o Example: max needs compareTo
o The helping function is sometimes called a “callback”.
e Some languages handle this using explicit function passing.
® InJava, we do this by wrapping up the needed function in an interface (e.g.
Arrays.sort needs compare which lives inside the comparator
interface)
® Arrays.sort “calls back” whenever it needs a comparison.
o Similar to giving your number to someone if they need information.
o See Project 1B to explore how to write code that uses comparators.

http://datastructur.es

