

RISC-V Vector: Current and Next?

RISC-V Vector - Overview

Current status

- Supports running Vector in user-mode:

- Context save/restore happen in switch_to()

- Supports ptrace, signal interfaces.

- Vector unit is disabled by default. Processes take a trap at its

first-Use, then the kernel decides whether does it allocate, track

Vector context according to a configurable policy.

In Development

- Kernel-Mode Vector:

- Supports running kernel-mode Vector between

kernel_vector_{begin, end} APIs with preemption on/off.

- Restores user’s Vector context only when returning to user

- Includes vectorized subroutines (planned for v4)

- memcpy/memset/memmove

- copy_{to, from}_user with scalar fixup

RISC-V Kernel Mode Vector - Challenges

Blindly calling vectorized functions would not lead to optimal

performance:

- Vector (SIMD) is not always better than scalar. There are things

needed to be taken into accounts, when comparing scalar with

vector:

- Hardware performance catachrestic

- Initial, Tear-down cost of using Vector (detour)

- Context switches (preemptible Vector)

(mem*/copy_*_user) hackbench (sec)

Netperf (Mb/s)

Scalar 1.279 6047.93

Use Vector, unconditionally 1.478 (-15.6%) 9361.85 (+54.79%)

Details:
- ran on a downstream kernel (v6.2) with the v3

patch series + vectorized mem*/copy*user +
some context switch instrument code

- FPGA simulates a SiFive core @ 2 GHz with 85 ns
LLC miss panalties

RISC-V Kernel Mode Vector - Try Optimizing kernel_vector_begin

Implementation Detail of the Kernel-mode Vector:

- Check if current context is able to use Vector:

- !in_hardirq()

- Save once and defer restore for user’s V context

- riscv_v_vstate_save

- riscv_v_vstate_set_restore

- Disable preemption and flip on Vector Unit:

- __this_cpu_xchg(vector_context_busy, true);

- riscv_v_enable();

RISC-V Kernel Mode Vector - Try Optimizing kernel_vector_begin

Implementation Detail of the Kernel-mode Vector:

- Check if current context is able to use Vector:

- !in_hardirq()

- Save once and defer restore for user’s V context

- riscv_v_vstate_save

- riscv_v_vstate_set_restore

- Disable preemption and flip on Vector Unit:

- __this_cpu_xchg(vector_context_busy, true);

- riscv_v_enable();

Approaches

- Check if current context is able to use Vector:

- test_thread_flag()

- Save once and defer restore for user’s V context

- riscv_v_vstate_save

- riscv_v_vstate_set_restore

- Disable preemption and flip on Thread flag:

- test_and_set_thread_flag()

- Enable Vector for kernel at boot and trap entry

Performance of memset/memcpy/memmove on SiFive Vector core (FPGA):

v3 versus inline + optimized kernel_vector_{begin, end}: remove pcpu, redundant checks, and enable V

Details:

Simulate frequency of 2GHz,

and 85ns LLC miss latency.

VLEN = 128b

v3 series hackbench (sec)

Netperf (Mb/s)

Scalar 1.279 6047.93

Use Vector, unconditionally 1.478 (-15.6%) 9361.85 (+54.79%)

Use Vector for optimal size 1.288 (+0.7%) 9494 (+56.98%)

Performance of memset/memcpy/memmove on SiFive
core (FPGA):

Benchmarking results are not sensitive to these changes:

- When sizes are large, then the constant cost is neglectable

- When sizes are small, the cost become more significant.

- However, minimizing the constant cost just makes things

“less worse” but not “better”

v3, optimized
kernel_vector_*

hackbench (sec)

Netperf (Mb/s)

Scalar 1.302 6118.63

Use Vector, unconditionally 1.466(-12.6%) 9398.87 (+53.61%)

Use Vector for optimal size 1.307 (-0.38%) 9487.52 (+55.06%)

RISC-V Kernel-Mode Vector - Proposal

Proposal:

- Enable Vector for larger operation sizes only (e.g. > 1K)

- A DT interface for venders to give optimal values

Any of these?

- Check if current context is able to use Vector:

- test_thread_flag()

- Save once and defer restore for user’s V context

- riscv_v_vstate_save

- riscv_v_vstate_set_restore

- Disable preemption and flip on Thread flag:

- test_and_set_thread_flag()

- Enable Vector for kernel at boot and trap entry

RISC-V Kernel-Mode Vector - Softirq

Some Vector-intensive user runs in softirq:

- Enable Vector for larger operation sizes only (e.g. > 1K)

- A DT interface for venders to give optimal values

Potential Solutions:

- Context nesting, when in softirq():

- kernel_vector_begin()

- save active kernel V context to pcpu or kernel_vstate,

- kernel_vector_end()

- mark the context for trap return

- Trap return:

- Restore V context

- Or, just disable bottom halves

Preemptible Vector - Functional Considerations

Reasons:

- Long running SIMD, with preemption disabled, could hit

system responsiveness.

- Large copies

- A kernel thread runs with auto-vectorization?

- copy_*_user without a scalar fallback on faults

- Yielding Vector unit might not intuitive to programmers

How-to:

- Add a kernel Vector context

- Do V-context tracking at trap handler

- Deal with the right context in contex switches

API-Design:

- Specialized or generic API?

- kernel_vector_begin_preemptible()

- Should we allow calling schedule() in preemptible-V?

- By tracking sstatus.VS

- Do we pre-allocate kernel mode Vector context?

- This is to prevent check fails in preemptible rcu

Preemptible Vector - Performance Considerations

Cost of a Vector context switch

- Time slice after each context switch: 0.75 ms

- 1500000 cycles on 2GHz

- Cost of a context switch:

Expected Value:

- The cost of starting/ending Vector context should be included in the vector

execution time

- If a context switch must happen during Vector execution, then

- T(n) + Tsave + Trestore < Tscalar is a gain. (n >= 2K for memcpy)
VLEN=128 Cycle

Counts
Number of
Samples

save 70.47 224619

restore 92.3 3820579

Preemptible Vector - Performance Considerations

Experiment Details:

- Each cyclictest runs with 12 netperf processes in the

background

- All kernel-mode Vector context are preallocated at processes’

start time for the preempt Vector part

Netperf total bw
(Mb/s)

without preempt
Vector

with preempt Vector

Scalar 5458.93 5707.57

Vector 8568.05 8510.47

