Towards improving FID

What's FID?

First Input Delay is the delta between:

e timeStamp
e Time right before handlers are about to begin running

For the first of the following:

keydown
mousedown
pointerdown followed by pointerup

[
o
[
o click

Some successes of FID

e Encourage people to break up their longtasks

e Tap delay issue surfaced

o Use mobile viewports
o Chrome is planning to get rid of the delay for some of the existing cases

How do we want to improve FID?

e Consider more than just the first input
e Potentially include scroll begin
e Evaluate a larger chunk of end-to-end latency

Evaluating more than just the first

We want to evaluate the following interactions, with multiple associated
events:

e Keyboard
o keydown
o keyup

e Taps or drags
o pointerdown and pointerup
o touchstart and touchend
o mousedown and mouseup
o click

e Scrolls: not necessarily blocked on any event

Need to associate Event to interaction

e |f we want to compute a metric value that associates the events of a single
interaction, we want developers to have this association too. For example,
the keydown-keyup match, etc.

e This would be solved by the proposed interactionID which I've presented
before.

e Otherideas?

Enable measuring scrolling

e We need a new API to do this as there is no way for developers to do this
right now.

e Scroll performance can be impacted by developers, for instance if they
force scrolling to happen in the JS thread.

e There is a need to measure initial scroll reaction (scroll begin).

e Use cases for subsequent scroll reactions (scroll updates) would probably
be better addressed by Frame Timing.

How can we expose initial scroll reactions?

e New PerformanceEventTiming entry
o Name (usually reserved for event type):
m scrollbegin
m “scroll” would be confusing with the scroll Event

e New (Performance)ScrollTiming entry
e Other?

Evaluating end-to-end of interaction

Input event i All input
tirFr)m i Renderer starts eveﬁt Next frame All async Final frame
frotra: l?sef receives running handlers presented work presented
input event event on screen completed on screen
hardware run
\ l /handlers \ \ l
et e TP == roiesi] %\f
blocking tasks handler handler task I task 2 task I I
- — e o e ____' _____ o4 | I T P —
=
> < L > >
Work Kicked off b ;
Y Final Update Ul

Processing time of

Event Handler(s)
(implementation in progress)

A

Event Handler(s)

(difficult to implement; may
require heuristics)

Input Delay

(implemented)

(difficult to implement; may
require heuristics)

»

Full duration

Heuristics are hard

e Asynchronous work is hard to track
e We can at least improve over FID by looking at the frame produced as a

result of event handlers running.
o “Next frame presented on screen” in the diagram

Questions or thoughts?

