ARTEMIS BASE CAMP CANDIDATE SITES:
CONSTRAINTS, LAYOUTS, & ROADTRIPS
Pascal Lee1,2,3
Sophia English1,4, Cody Johnson1,5
Erin Pimentel1,6, Charles Willard1,7
John W. Schutt2
1SETI Institute, 2Mars Institute,
3NASA Ames Research Center,
4Texas A&M, 5Western Nevada College
6Hamilton College, 7University of Chicago
6th Annual MVA Workshop & Symposium
LAX Sheraton Gateway, Los Angeles, CA
9 Nov 2022
1
WHY BUILD A BASE & WHERE:
LESSONS FROM EARTH
PATRIOT HILLS (Chile + ANI)
McMURDO
(USA)
DUMONT
D’URVILLE
(France)
ANTARCTICA
Permanent Bases
Temporary Outposts
Pascal’s Field Trips
ANSMET
DUMONT D’URVILLE
DUMONT D’URVILLE MOBILITY SYSTEM
McMURDO
McMURDO MOBILITY SYSTEM
REMOTE OUTPOST AT ROI (Region Of Interest)
9
N U N A V U T
Grise Fiord
Devon Island is the largest
uninhabited island on Earth.
DEVON ISLAND
10
© Pascal Lee 2010
HAUGHTON-MARS PROJECT BASE
11
Tycho
HAUGHTON-MARS PROJECT MOBILITY SYSTEM
2
ARETMIS BASE CAMP:
SOUTH POLAR OPTIONS
ARTEMIS
LUNAR POLAR WATER
SHACKLETON CRATER
Cold, Dark, Hostile, Environment w/ Resources, But Requires Power to Operate In.
Type | Criterion | Basis |
Logistics | 1) Solar Illumination | Maximize Solar Energy Generation |
2) Direct-to-Earth (DTE) Visibility | Minimize Reliance on Orbital Relay Assets | |
3) Habitat Area | Analog Bases (Antarctica, HMP in Arctic, ISS) | |
4) Landing/Launch Pad Area | Minimize Rocket Exhaust Ejecta on Habitat Area | |
Science | 5) Proximity to H2O-Ice bearing PSRs | LEAG: Water History on Moon + ISRU |
6) Proximity to SPA Basin | LEAG: Lunar Bombardment History + Evolution of Lunar Mantle & Crust |
ARTEMIS BASE CAMP SITE SELECTION CRITERIA
Initial Map of Candidate Sites
deGerlache Crater Rim
2.5 km Radius Sites
Background: 120m resolution solar illumination map (Mazarico et al. 2011)
1. SOLAR ILLUMINATION
Initial Map of Candidate Sites
< 50% of the time
Nobile Rim
2.5km Radius Sites
Background: 120m Resolution Solar Illumination Map (Mazarico et al. 2011)
Background: 120m Resolution Earth Visibility Map
(Mazarico et al. 2011)
2. DTE VISIBILITY
Candidate Sites:
DTE Visibility vs. Solar Illumination
DTE Visibility (% of time)
Solar Illumination (% of time)
CRITERIA 1 & 2 COMBINED
West Malapert
~1.3 km2
Nobile - α
~1.5 km2
Shackleton Rim
< 0.4 km2
Slopes:
Sub-Criteria |
< 5° Slopes (+ limited <10°) |
≥ 1km2 Area |
Includes Point of Maximum Illumination for Solar Array |
Methods |
1) Simple Python Area Integration |
2) Manual Refinement using Search (Lunar Quickmap) |
Slope maps from NASA LRO LOLA Elevation Data
3. HAB AREA
4. PAD AREA
Hab Area
Pad Area
Topographic
Barrier
Exhaustive Python
Algorithm
Sub-Criteria | Basis | Method |
< 5° Slopes | NASA Human Landing System Requirements Document (HLS-R-0071 & HLS-R-0021) | Exhaustive Python Algorithm |
≥ 100m Radius Area | ||
1-3 km away from Point of Maximum Illumination | Minimize Rocket Exhaust Ejecta onto Hab Area [1][2] | |
Topographic Barrier or Elevation Difference of ≥ 100m. | Manual Confirmation in ArcGIS | |
Path to Habitat Area | Trafficability |
[1] Watkins et al. 2021 [White paper + Refs therein]
[2] Metzger P. 2020, LPI Lunar Dust Workshop
Pink = Potential Pad Area
RGB Paths = Topographic Profiles
Nobile - α
4. PAD AREA
Pink = Potential Pad Area
RGB Paths = Topographic Profiles
4. PAD AREA
Nobile - α
Candidate Sites
Green: >75% Solar Illumination
Yellow: 65%-75% Solar Illumination
Logistics Criteria 1 – 4 Met
25 Candidate Sites
Shackleton-Slater
LOGISTICALLY
VIABLE CANDIDATE
SITES
NASA ARTEMIS III CANDIDATE LANDING REGIONS
Released 19 Aug 2022
ARTEMIS BASE CAMPS
(This Study)
vs
NASA ARTEMIS III CLRs
All Potential Sites
169 H2O-Ice Bearing PSRs
<10°
<15°
<20°
Example Least-Cost-Path Analysis: < 15° Slopes
5. ACCESS TO H2O-ICE BEARING PSRs (Permanently Shadowed Regions)
SPAB
6. ACCESS TO SOUTH POLE-AITKEN BASIN (SPAB)
Left: Clementine Data
Right: Pieters et al.
Candidate Artemis Base Camp Site REGIONS | Proximity (km) Minimal Average Distance to 1 H2O-PSR | Plurality (km) Minimal Average Average Distance to 5 H2O-PSRs | Comments | ||
Slope < 20° | Slope < 10° | Slope < 20° | Slope < 10° | ||
Shackleton-Slater | 4.8 | 6.7 | 17.4 | 39.2 | Best Overall H2O-PSR Access |
Shackleton-deGerlache Ridge | 6.3 | 9.1 | 22.6 | 51.6 | Nearest South Pole (~16km) |
Mt. Kocher | 7.3 | 8.4 | 21.4 | N/A | Access to SPA-Basin [1] |
West-deGerlache | 10.0 | 17.9 | 32.4 | 44.1 | |
Cabeus-Haworth | 14.5 | 19.7 + N/A | 21.9 | N/A | Closest to Cabeus: Proven Volatiles [2] + Lunar Paleopole [3] |
Faustini | 17.0* | 23.6 | 32.1 | 57.8 | *Faustini-β: ~9.1 km access to 150ppm of Hydrogen PSR |
Malapert | 13.9 | N/A | 37.6 | N/A | Poor PSR Access |
Nobile | 26.9 | 35.6 | 38.7 | N/A | |
[1] Pimentel E. et al. 2021, LSSW XII [2] Colaprete A. et al. 2010, Science [3] Siegler M. et al. 2016, Nature
BEST SCIENCE ACCESS: H2O-ICE PSRs + SPA BASIN + OTHER
Note: Still need to consider illumination timing along all access paths.
Shackleton-Slater-α |
78% Solar Illumination |
60% DTE Visibility |
Hab Area >1.2 km2 |
2 Compliant Pad Area Options (only one shown) |
Best Overall H2O-PSR Access Traverse to Nearby H2O-PSR ~12km @ < 10° Slope (Shown) ~6km @ < 15° Slope |
Slope Legend
Slope Map + NAC Images
SHACKLETON-SLATER-α
AKA SVERDRUP-SLATER-α
Slope Map + NAC Images
[1] Moriarty D. P. , III & Pieters C. M. 2018, JGR [2] Pimentel E. et al. 2021, LSSW XII
Additional Major Science Target: SPA Basin |
Mt. Kocher is on boundary between Heterogeneous Annulus and Mg-rich Pyroxene-Bearing Annulus [1] Possible Traverses deeper into SPA |
Mt. Kocher-β |
77% Solar Illumination |
60% DTE Visibility |
Hab Area >2.4 km2 |
> 2 Compliant Pad Areas |
Average PSR Access, but Access to SPAB as well! Traverse to Nearby H2O-PSR ~8km @ < 10° Slope (Shown) |
Figure Credit: [2]
MT KOCHER-β
TOP 3 BEST CANDIDATE ARTEMIS BASE CAMP SITES (THIS STUDY)
Shackleton-Slater
3
ARETMIS BASE CAMP:
NON-POLAR OPTIONS
Clavius
CLAVIUS
2001: CLAVIUS BASE
2001: MOON BUS
2001: ROI
MOON: COPERNICAN AGE CRATERS
MOON: LARGE COPERNICAN AGE CRATERS
MOON: NON-POLAR CANDIDATE BASE SITES
Philolaus
Clavius
ACK
Pascal Lee 2022
Tycho
Copernicus
TRANQUILITATIS
Philolaus
ACK
Clavius
Tycho
Copernicus
Aristarchus
ACK
Philolaus
Clavius
Kepler
Tycho
PHILOLAUS
Tycho
EARTH FROM PHILOLAUS