
Gitlab and the EIC
project detector:

“Code Repository” Discussion
Wednesday, May 25th 2022

1

Whitney Armstrong (Argonne National Laboratory) ,
Sylvester Joosten (Argonne National Laboratory),
Wouter Deconinck (The University of Manitoba

Gitlab and the EIC
project detector:

“Code Repository” Discussion
Wednesday, May 25th 2022

2

3

Productive Gitlab
workflows for the

EIC Project Detector
Wednesday, May 25th 2022

Introduction

Tasked with discussing gitlab as a “Code Repository” decision

● We really want to decide is: what collaboration and development platform
should we use?

● That is, how will we work together on software for the EIC?
● Ultimately we are deciding on workflows
● This means considering CI/CD and containerization too (I have tried to keep

this to a minimum)
● I recommend we use eicweb.phy.anl.gov, anybody can signup for an account

using their institutional email (ie not gmail).

4

https://eicweb.phy.anl.gov

Gitlab workflows for the EIC Project Detector
● Gitlab has too many features to discuss them all. It has issues, milestones, groups and subgroups

(own milestones), issue board tracker, wiki, permissions configuration for nearly everything including
pipeline triggers…

● Permissions and roles
○ ‘Admins’ maintain the server, these would be a few experts.
○ ‘Owners’ manage groups and projects, traditional thought of as the role of admin
○ ‘Maintainers’ have slightly less permissions than owners
○ ‘Developer’, ‘Reporter’, and ‘Guest’ - See documentation for details

● Gitlab hits all the requirements I have seen.
○ ✅ Cloud service accessible from anywhere in the world
○ ✅ Does not require a paid account for each user
○ ✅ Top-level repositories can be configured with different access policies

ranging from world-readable to private (with access only for select users)
○ ✅ Supports Continuous Integration (CI)
○ ✅ (self hosted) Non-restrictive limits:

■ >=1000 repositories
■ >=1TB (w/ ability to increase as needed w/o significant additional cost)
■ >=10TB/mo (w/ ability to increase as needed w/o significant additional cost)

● I would also add the requirements
○ ✅ Low entry barrier – it should be easy to use and quickly make contributions
○ ✅ Integrated container registry and customizable CI executors (eg gitlab-runners)

5

https://about.gitlab.com/features/?stage=plan
https://docs.gitlab.com/ee/user/permissions.html#project-members-permissions

● What is eicweb?
○ Self-hosted gitlab server at Argonne
○ Dedicated to EIC user community for software
○ More than just a software repo: eicweb is a software and simulation R&D platform

● How did we use eicweb?
○ Our use and strategy for eicweb evolved
○ Initially just a gitlab repo with issues, versions, etc…
○ Started using CI in typical ways: compile checks, container builds
○ Our use case for the EIC is different in many ways so we started doing new things with

CI/CD pipelines and artifacts
○ The monolithic “Code Repository” model was dropped for a growing collection of groups

and sub-groups of smaller repos.
○ Containerization matured in parallel (docker and singularity builds)

● We learned a lot while developing the ATHENA proposal and have
identified many areas (big and small) for improvement

○ Eicweb could be characterized as an ‘analysis facility’ and is the direction we are headed

Software and Simulation R&D with eicweb.phy.anl.gov

6

● Initially nearly all detector/geant4 code was in NPDet
Quickly realized NPDet was really temporary:

○ Addons could (should) be pushed to upstream projects (eg dd4hep or podio)
○ Components should be separated (eg ip6 geometry and central detector)

● NPDet is deprecated but highlights how a more granular approach to structuring groups
and repositories lends itself to greater clarity.

● The benchmarks group was initially split into detector, reconstruction, and
physics repositories

○ A single detector and reconstruction benchmarks repo seemed to
work fine.

○ We struggled to fully develop physics benchmarks in a robust way.
Likely due to the monolithic approach.

○ Physics benchmarks is better off as a collection of subgroups looking
at analysis of multiple but related observables. For example,
EIC/benchmarks/deep_exclusive_benchmarks might be
looking at the combined DVMP and DVCS data with proton and
deuteron beams to provide some flavor sep of GPDS/CFFs.

○ Also, getting physics WGs to contribute to the development of
benchmarks was difficult.

○ Also, we never succeeded in applying a benchmarking helper library
for robust metrics on performance for detector comparisons

Eicweb Repositories and pipelines

7

● ❌ Github is a closed source service
● ❌ Subject to github platform changes (microsoft)
● ✅ Self-hosted gitlab releases are frequent and changes well documented
● ✅ Gitlab is constantly improving and new features added
● Gitea would be a good self hosted alternative to github
● Their website provides feature comparisons among the different platforms
● ✅ In the future, eicweb hosting can be relocated or even distributed
● ✅ Gitlab’s powerful v4 REST API and is being upgraded to a much more

powerful and modern GraphQL API – lots of opportunity for new ideas and
development tuned to our unique use case

● ✅ Gitlab is a dedicated cluster of heterogeneous hardware and services
backing up the repository which we can grow as needed

Why not other development platforms?

8

https://docs.gitea.io/en-us/
https://docs.gitea.io/en-us/comparison/

What’s coming to eicweb in the future

● We are pushing the limits of the current server configuration
● But we have a much more powerful machine with more storage and faster

network connection in a new location. Will migrate servers in the next few
weeks (should not be noticed by users).

● Heterogeneous computing and HPC runners.
● Kubernetes cluster for software and simulation R&D, extra gitlab features

enabled with kubernetes clusters.
● Lots of other ideas not directly related to gitlab but that assume its

functionality is available (eg S3 storage for intermediate simulation data
cache, maybe rucio)

9

● Nearly all software and simulation
development can be completed with gitlab
in your browser (this should be the preferred
method over running locally)

● To make a change you only need to know
how to use the built-in editor to make a
commit (like changing the tracker radius by
1cm)

● Creating a new MR, triggers the pipelines
● Successful pipelines upload their results

(artifacts) which can be browsed or accessed
via the web API.

● No special software setup required!
● Artifacts containing root geometry can link to

a jsroot display of the MR’s modified
subsystem

All you need is a web browser

10

https://eic.phy.anl.gov/geoviewer/index.htm?file=https://eicweb.phy.anl.gov/EIC/detectors/athena/-/jobs/676729/artifacts/raw/geo/vertex_only_geo.root?job=dump_geometry&item=default;1&opt=clipx;clipy;transp30;zoom75;ROTY320;ROTZ340;trz0;trr0;ctrl;all
https://eic.phy.anl.gov/geoviewer/index.htm?file=https://eicweb.phy.anl.gov/EIC/detectors/athena/-/jobs/676729/artifacts/raw/geo/vertex_only_geo.root?job=dump_geometry&item=default;1&opt=clipx;clipy;transp30;zoom75;ROTY320;ROTZ340;trz0;trr0;ctrl;all
https://eic.phy.anl.gov/geoviewer/index.htm?file=https://eicweb.phy.anl.gov/EIC/detectors/athena/-/jobs/676729/artifacts/raw/geo/vertex_only_geo.root?job=dump_geometry&item=default;1&opt=clipx;clipy;transp30;zoom75;ROTY320;ROTZ340;trz0;trr0;ctrl;all

