
Movelt for ROS 2 ROS 2 TSC - December 2020

Henning Kayser, MS PickNik Robotics Chenningkayser

Outline

- Roadmap Status Update
- Hybrid Planning
- Migration Challenges
- ROS 2 Learnings
- Future Plans

Roadmap Status Update

Milestone 1	Milestone 2	Milestone 3
Straight Port to ROS 2	Realtime Support	Fully Leverage ROS 2
Fully migrate existing Movelt packages to ROS 2	Reactive, closed-loop control to sensor input YOU	Lifecycle management of Movelt nodes
Wrap up Acutronic's work porting core Movelt functionality	Visual servoing, octomap updates	Deterministic startup, reset, & shutdown sequences
Leverage ROS 2:	Preempt motion if new collision detected	Leverage ROS2 component nodes
Build system (ament), middleware, logging, parameters	Seperate global and local planner (hybrid planning)	Ability to run Movelt as single or multi-process
Cleanup Movelt 2 codebase	Global planner (full collision checking): 30hz	Replace pluginlib with components
	Local planner (IK-based, field-based): 300hz	Cleanup API
	Zero-memory copy integration to controllers (ros_control)	More generic and standalone interfaces
	Tighter integration to ros_control	
	Integrate pilz industrial motion	

"Straight Port to ROS 2"

Progress: 94% - 58 of 62 targets ported

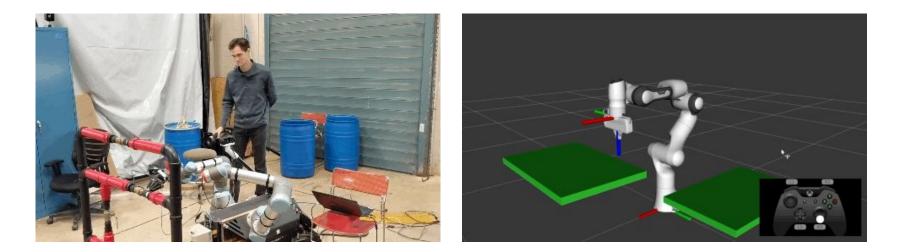
Incomplete: Bullet, TrajOpt, Movelt Setup Assistant, Perception

Demos: MoveGroup, MoveItCpp, MoveIt Servo

Milestone 1 - Full Migration - MoveGroup

Demo URL: <u>https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_move_group</u>

Milestone 1 - Full Migration - MoveltCpp



Demo URL: <u>https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_moveit_cpp</u>

Movelt Servo

- Joint/Velocity-streaming controller, inverse Jacobian method
- Input message allows wide range of input devices
- Checks for joint limits, collision, singularity safety

Hybrid Planning

Milestone 2 - Realtime Support

2. Separate Global/Local Planner (Hybrid Planning)

R&D Student Intern: Sebastian Jahr

(Karlsruhe Institute of Technology)

Project Status

- Initial research completed
- Working on architecture design
- Selecting & Testing Planner Candidates
- Completion planned for end of **January 2021**

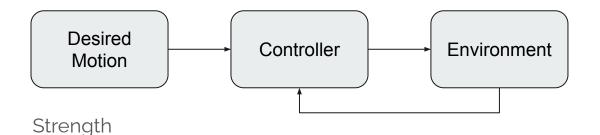
Realtime Support

Reactive, closed-loop control to sensor input Visual servoing, faster octomap updates Preempt motion if new collision detected Seperate global and local planner (hybrid planning) Global planner (full collision checking): ~10hz Local planner (IK-based, field-based): ~300hz Zero-memory copy integration to controllers (ros_control) Tighter integration to ros_control Integrate pilz industrial motion

Current approach: Sense-Plan-Act

Strength

• Can find a global solution in workspaces with complex geometries


Weakness

• Copes bad with uncertainties and (fast) changing environment

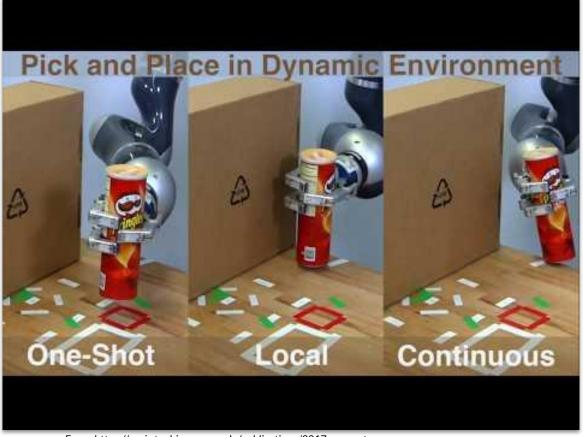
Local reactive control

• Reacts immediately to changes in the environment

Weakness

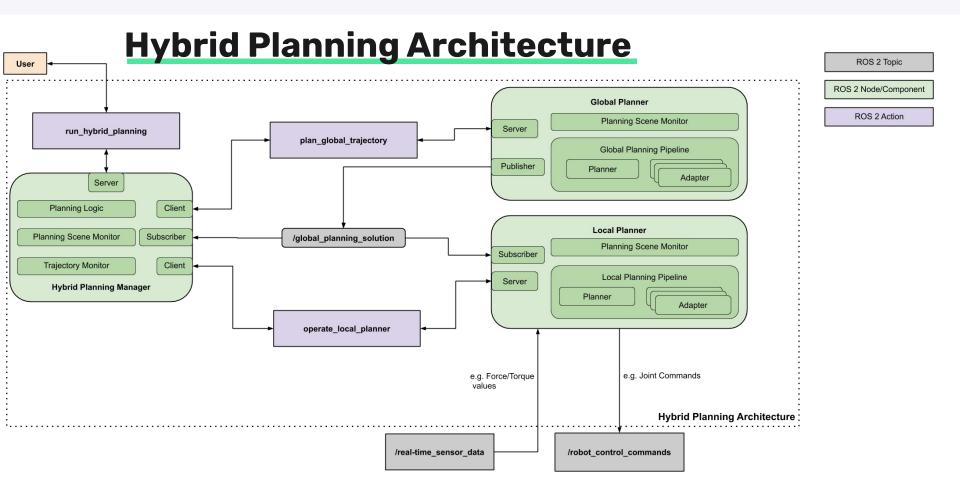
• Gets stuck in local minimum

Goal: Execute adaptive and reactive motions using global/local planning


Adaptive Motion - Drawing on a chalkboard

- Global planner defines the motion required for drawing the letters
- Local planner follows motion while controlling for force, smoothness, etc..

Reactive Motion - Steering around a new collision object in the scene


- Global planner used for fixing invalidated trajectories
- Local planner allows "keeping clear" from objects using field-based distance minimization

From: https://am.is.tuebingen.mpg.de/publications/2017_rss_system

Message Performance Requirements

Communication use cases:

• Controller commands - High frequency, low bandwith, realtime-safe

CKNIK

- Point cloud data High message size, possibly zero-copy comm
- Scene updates Synchronized processing vs. shared access
- Plan action feedback Possibly high-frequent events

We're still looking into exact specs and bottlenecks before optimizing DDS.

Migration Challenges

Use case: PlanningSceneMonitor provides safe concurrent read/write access to unique planning scene via ROS service and topic interfaces

ROS 1

- Requests are handled in dedicated CallbackQueue and processed in a serialized event loop
- CallbackQueue is managed by separate NodeHandle and AsyncSpinner

ROS 2

- AsyncSpinner is replaced with SingleThreadedExecutor
- NodeHandle is replaced with private node instance at subnamespace "*_private"

Possible improvements:

• Implement CallbackQueue behavior similar to the CallbackGroup API (https://github.com/ros2/rclcpp/issues/1287)

Use case: Custom OMPL planner identifiers are mapped to algorithm config in yaml file

ROS 1

- Parameters can be structured as generic dictionary map with unknown keys
- Parameter groups can be parsed to arbitrary structs

ROS 2

- All parameters should be declared in advance, unknown parameters are discouraged
- Workaround:
 - Define separate parameter key list and declare unknown params at runtime
 - Specify explicit struct types in config instead of using implicit conventions

Use case: Update specific node parameters from remote interfaces

ROS 1

- Classes can register a predefined config for updating the internal parameter state
- Remote nodes can update and apply new parameters at runtime

ROS 2

- Config changes are handled using the parameter callback API
- Parameter types need to be filtered, validated and applied for each class instance

Use case: Movelt setup packages generated by the Movelt Setup Assistant templates

ROS 1

- Launch structure is composed of nested XML files for enabling specific Movelt components
- Each Movelt component has it's own XML file that loads a set of rosaparams from a YAML
- Many parameters are global and used by different nodes, i.e. "robot_description"

ROS 2

- Nodes are configured as LaunchDescription instances in a single python file
- Parameters are read from YAML files and passed to nodes where required
- Launch files are not composable (yet)
- Still a lot of redundancy in Movelt's launch files

ROS 2 Learnings

Overall great focus on code quality standards and best practices

- Improved and concise build tools: colcon, ament, vcstool
- Outstanding linter support:
 - ament_lint_[cmake, cpplint, copyright, clang_format, pep ...]
 - Good linter defaults useful for package standardization
 - Perfectly set up for extensibility
- Very clean Modern C++ implementations and features:
 - Consistent support for handling async calls with std::future
 - Flexible callback types enabling simple lambda implementations
 - Parameter templates provide control over declared value types and definitions

Still an early-stage framework that lacks the long term usage from ROS 1

- Lack of documentation and examples for advanced usage
 - Unclear behavior needs to be looked up in code
 - Missing best practices for Python launch files and parameter loading
- Several breaking API changes in upstream dependencies (probably less with future releases)
- Some callback function types don't work with clang-tidy
- No apparent consensus of proper time source usage in standard packages
- Several features are WIP and require workarounds

Future Plans

Future Plan

Releases

- New Foxy Debian Release every 6 weeks
 now
 - Frequent syncs with Movelt 1
- Switching main branch to Rolling Ridley **Q12021**
 - Foxy continued in release branch
- Windows & OSX support CI enabled **Q12021**
- Galactic release

Upcoming Work

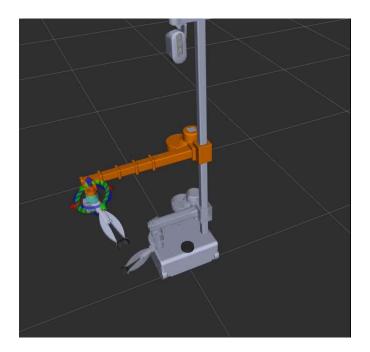
- Port Movelt ecosystem: MTC, moveit_calibration, ...
- Redesign Movelt config, launch files, setup assistant
- New long term feature roadmap in Q1 2021

03 2021

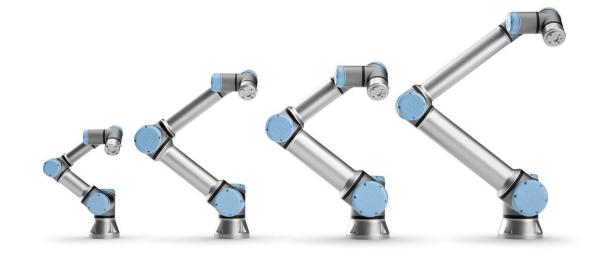
Hardware Integration Challenges

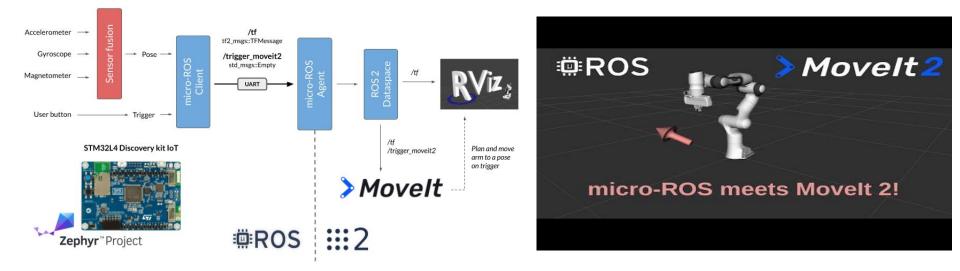
"Chicken and Egg" Problem:

- ROS 2 user adoption is driven by hardware support
- Broad hardware support requires user adoption


CKNIK

PickNik is working on multiple hardware integration efforts...


Hello Robot - "Stretch"



Universal Robots - ROS 2 driver

eProsima - micro-ROS sensor integration

See: https://discourse.ros.org/t/micro-ros-meets-moveit/16836

Get Involved

Get Involved

https://github.com/ros-planning/moveit2

Many approaches:

- Adding New Features
- Helping with Movelt 2 Roadmap
- Financial contributions via code sprints and grants
- Enhancing Documentation
- Reporting & Fixing Bugs

Thanks!