
MoveIt for ROS 2
ROS 2 TSC - December 2020

Henning Kayser, MS
PickNik Robotics
 henningkayser

Outline

● Roadmap Status Update
● Hybrid Planning
● Migration Challenges
● ROS 2 Learnings
● Future Plans

Roadmap Status Update

Milestone 1 - Full Migration

“Straight Port to ROS 2”
Progress: 94% - 58 of 62 targets ported
Incomplete: Bullet, TrajOpt, MoveIt Setup Assistant, Perception
Demos: MoveGroup, MoveItCpp, MoveIt Servo

Milestone 1 - Full Migration - MoveGroup

Demo URL: https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_move_group

https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_move_group
https://docs.google.com/file/d/1RlclyEOWW2tJhtulwf5QsDdBXeV057mS/preview

Milestone 1 - Full Migration - MoveItCpp

Demo URL: https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_moveit_cpp

https://github.com/ros-planning/moveit2/tree/main/moveit_demo_nodes/run_moveit_cpp
https://docs.google.com/file/d/1Dpukw-gKlZXgjXPBX0_UtwMR8E-RDVq-/preview

MoveIt Servo

● Joint/Velocity-streaming controller, inverse Jacobian method
● Input message allows wide range of input devices
● Checks for joint limits, collision, singularity safety

Hybrid Planning

Milestone 2 - Realtime Support

2. Separate Global/Local Planner (Hybrid Planning)

R&D Student Intern: Sebastian Jahr
 (Karlsruhe Institute of Technology)

Project Status
○ Initial research completed
○ Working on architecture design
○ Selecting & Testing Planner Candidates
○ Completion planned for end of January 2021

Current approach: Sense-Plan-Act

Strength

● Can find a global solution in workspaces with
complex geometries

Weakness

● Copes bad with uncertainties and (fast) changing
environment

Sensor Planner Motion
Execution

Local reactive control

Strength

● Reacts immediately to changes in the environment

Weakness

● Gets stuck in local minimum

Desired
Motion Controller Environment

Hybrid Planning

Goal: Execute adaptive and reactive motions using global/local planning

Adaptive Motion - Drawing on a chalkboard
● Global planner defines the motion required for drawing the letters
● Local planner follows motion while controlling for force, smoothness, etc..

Reactive Motion - Steering around a new collision object in the scene
● Global planner used for fixing invalidated trajectories
● Local planner allows “keeping clear” from objects using field-based

distance minimization

From: https://am.is.tuebingen.mpg.de/publications/2017_rss_system

http://www.youtube.com/watch?v=OdE_Kj1aPkY&t=83

Hybrid Planning Architecture

Message Performance Requirements

Communication use cases:
● Controller commands - High frequency, low bandwith, realtime-safe
● Point cloud data - High message size, possibly zero-copy comm
● Scene updates - Synchronized processing vs. shared access
● Plan action feedback - Possibly high-frequent events

We’re still looking into exact specs and bottlenecks before optimizing DDS.

Migration Challenges

ROS 2 - Migration Challenges - CallbackQueue

Use case: PlanningSceneMonitor provides safe concurrent read/write access to unique planning
scene via ROS service and topic interfaces

ROS 1
● Requests are handled in dedicated CallbackQueue and processed in a serialized event loop
● CallbackQueue is managed by separate NodeHandle and AsyncSpinner

ROS 2
● AsyncSpinner is replaced with SingleThreadedExecutor
● NodeHandle is replaced with private node instance at subnamespace “*_private”

Possible improvements:
● Implement CallbackQueue behavior similar to the CallbackGroup API

(https://github.com/ros2/rclcpp/issues/1287)

ROS 2 - Migration Challenges - XmlRpc

Use case: Custom OMPL planner identifiers are mapped to algorithm config in yaml file

ROS 1
● Parameters can be structured as generic dictionary map with unknown keys
● Parameter groups can be parsed to arbitrary structs

ROS 2
● All parameters should be declared in advance, unknown parameters are discouraged
● Workaround:

○ Define separate parameter key list and declare unknown params at runtime
○ Specify explicit struct types in config instead of using implicit conventions

ROS 2 - Migration Challenges - DynamicReconfigure

Use case: Update specific node parameters from remote interfaces

ROS 1
● Classes can register a predefined config for updating the internal parameter state
● Remote nodes can update and apply new parameters at runtime

ROS 2
● Config changes are handled using the parameter callback API
● Parameter types need to be filtered, validated and applied for each class instance

ROS 2 - Migration Challenges - Launch & Config structure

Use case: MoveIt setup packages generated by the MoveIt Setup Assistant templates

ROS 1
● Launch structure is composed of nested XML files for enabling specific MoveIt components
● Each MoveIt component has it’s own XML file that loads a set of rosaparams from a YAML
● Many parameters are global and used by different nodes, i.e. “robot_description”

ROS 2
● Nodes are configured as LaunchDescription instances in a single python file
● Parameters are read from YAML files and passed to nodes where required
● Launch files are not composable (yet)
● Still a lot of redundancy in MoveIt’s launch files

ROS 2 Learnings

ROS 2 - Code Quality, Linters, API

Overall great focus on code quality standards and best practices

● Improved and concise build tools: colcon, ament, vcstool
● Outstanding linter support:

○ ament_lint_[cmake, cpplint, copyright, clang_format, pep ...]
○ Good linter defaults useful for package standardization
○ Perfectly set up for extensibility

● Very clean Modern C++ implementations and features:
○ Consistent support for handling async calls with std::future
○ Flexible callback types enabling simple lambda implementations
○ Parameter templates provide control over declared value types and definitions

ROS 2 - Pain Points

Still an early-stage framework that lacks the long term usage from ROS 1

● Lack of documentation and examples for advanced usage
○ Unclear behavior needs to be looked up in code
○ Missing best practices for Python launch files and parameter loading

● Several breaking API changes in upstream dependencies (probably less with future
releases)

● Some callback function types don’t work with clang-tidy
● No apparent consensus of proper time source usage in standard packages
● Several features are WIP and require workarounds

Future Plans

Future Plan

Releases
● New Foxy Debian Release every 6 weeks now

○ Frequent syncs with MoveIt 1
● Switching main branch to Rolling Ridley Q1 2021

○ Foxy continued in release branch
● Windows & OSX support - CI enabled Q1 2021
● Galactic release Q3 2021

Upcoming Work
● Port MoveIt ecosystem: MTC, moveit_calibration, …
● Redesign MoveIt config, launch files, setup assistant
● New long term feature roadmap in Q1 2021

Hardware Integration Challenges

“Chicken and Egg” Problem:

● ROS 2 user adoption is driven by hardware support
● Broad hardware support requires user adoption

PickNik is working on multiple hardware integration efforts...

ROS 2 Hardware Demo

Hello Robot - “Stretch”

ROS 2 Hardware Support

Universal Robots - ROS 2 driver

eProsima - micro-ROS sensor integration

See: https://discourse.ros.org/t/micro-ros-meets-moveit/16836

http://www.youtube.com/watch?v=wgIKGUGSX7Y&t=242
https://discourse.ros.org/t/micro-ros-meets-moveit/16836

https://github.com/ros-planning/moveit2

Many approaches:

● Adding New Features
● Helping with MoveIt 2 Roadmap
● Financial contributions via code sprints and grants
● Enhancing Documentation
● Reporting & Fixing Bugs

Get Involved

Get Involved

https://github.com/ros-planning/moveit2

Thanks!

