
Practical Course "Big Data Science"
DeepC Final Presentation

29.07.2019

Davletshina, Diana
Melnychuk, Valik
Singla, Hitansh
Tran, Viet

Anomaly Detection in X-Ray Images

Fakultät für Mathematik, Informatik und Statistik
Institut für Informatik

Lehrstuhl für Datenbanksysteme
und Data Mining

Presentation for:

About Us

Diana Davletshina

MSc Data Science (LMU)
Bachelors in Informatics
(Innopolis, Russia)

Viet Tran

MSc Biostatistics (LMU)
Bachelors in Statistics,
Philosophy
(LMU)

Valentyn Melnychuk

MSc Data Science (LMU)
Bachelors in System Analysis
(Kyiv, Ukraine)

Hitansh Singla

MSc Data Science (LMU)
Bachelors in Comp. Science
(New Delhi, India)

2

Mentors

Max Berrendorf

Research Assistant
Department of Informatik
LMU

Evgeniy Faerman

Research Assistant
Department of Informatik
LMU

3

Agenda

- Task & Data
- Preprocessing workflow
- Method & Models training
- Visualizations
- Future work

4

Task Allocated to Us
- Classify hand X-ray images into normal and not normal
- Because of high labelling cost → unsupervised
- Visualize problematic areas of not normal hand

5

Data Provided
- Subset of MURA dataset
- Contains hand X-rays grayscale images
- Very noisy

- Size: 5543 images
- Percentage of positive

images: 26%
- Number of patients: 1964
- Approx. 10% of images are

mislabeled.

6

Agenda

- Task & Data
- Preprocessing workflow
- Method & Models training
- Visualizations
- Future work

7

Legends
✅ Implemented: The algorithm has been implemented and included in the
repository
✅ Tested: It has been tested
✅ Integrated: It has been integrated into the pipeline and evaluated

✅ Green: Working Fine
⚠ Yellow: No major success
❌ Red: Skipped this step

8

Workflow Followed
Preprocessing:

- Cropping using OpenCV
- Object detection using Tensorflow
- Semantic segmentation (Photoshop)

Learning and Prediction:

- 3 types of Autoencoders
- 3 types of GANs

9

Preprocessing: Square Detection
- Idea: Crop out X-ray-scans, synthetically created for MURA
- Based on OpenCV Contours Detection

Frameworks
Used:

✅ OpenCV

✅ Implemented
✅ Tested
✅ Integrated

10

Preprocessing: Hand Detection & Cropping
Frameworks
Used:

✅ OpenCV
✅ Tensorflow
object detection

✅ Implemented
✅ Tested
✅ Integrated

- Idea: Detect hand and crop, output image has centered hand
- Based on Single shot multibox detector (SSD) with MobileNet
- Manually labeled bounding boxes for over 150 hands
- Fails for tilted images, not whole palms, two hands on one image
- Manually cropped all undetected images

11

Preprocessing: Writings Detection & Removal
Frameworks
Used:

✅ OpenCV
✅ Tensorflow
object detection

✅ Implemented
⚠ Tested
❌ Integrated

- Idea: Detect writings and remove by inpainting
- Analogous SSD method
- Manually labeled bounding boxes for over 100 labels
- Fails for writings, which is too close to hand, tilted writings

12

Preprocessing: Semantic Segmentation
Frameworks
Used:

✅ Photoshop
batch processing

⚠ Implemented
✅ Tested
✅ Integrated

- Idea: Segment hand and background, remove background
- DL Semantic segmentation requires labeled masks
- Tried with GrabCut, but it is hard to adapt it for all images
- We used Photoshop ‘Select Subject’ option
- Still not perfect solution

13

Preprocessing: Augmentation
Frameworks
Used:

✅ OpenCV
✅ imgaug

✅ Implemented
✅ Tested
✅ Integrated

Augmentation techniques:
- Flipping
- Rotating
- Brightness adjustment
- Zoom in/out

14

Processing: Data-split
Frameworks
Used:

✅ Scikit-learn

✅ Implemented
✅ Tested
✅ Integrated

- Unsupervised fashion means that we use only normal
images in a training phase

- Still need to know, that images are normal
- Train is only 50% - to make test and validation balanced

15

Preprocessing Pipeline: Altogether
- Centered Padding converts all images to 512x512 shape

(also tried uniform padding)
- Min-Max Normalisation scales all pixels to [0, 1]

16

Agenda

- Task & Data
- Preprocessing workflow
- Method & Models training
- Visualizations
- Future work

17

Method: Outlier Detection
We discriminate between normal and abnormal cases using the following
statistics (outlier scores):

- Reconstruction loss (CAE, BiGAN, Alpha-GAN)
- Reconstruction loss + Kullback-Leibler divergence (VAE)
- Discriminator output probability (DCGAN, BiGAN, Alpha-GAN)
- Latent features outlier detection:

- One-class SVM (CAE)
- DBSCAN (CAE)

18

Training: Overview
- Unsupervised Learning:

- Non-negative matrix factorisation + DBSCAN / One-Class SVM
- Unsupervised Deep Learning:

- Deep One-Class Classification
- Convolutional Autoencoder (CAE)
- Variational Convolutional Autoencoder (VAE)
- Deep Convolutional GAN (DCGAN)
- Bidirectional GAN (BiGAN)
- Alpha-GAN (GAN + VAE)

19

Training: Static Methods
Non Negative Matrix Factorisation:

An image V is factorized in W and H matrices

W and H looks like this

V V = W • H 20

Training: Static Methods

DBScan

21

One Class SVM

Training: Static Methods
Frameworks
Used:

✅ OpenCV
✅ Scikit-learn

✅ Implemented
⚠ Tested
❌ Integrated

Reconstruction

22

Training: Deep One-Class Classification
- Predicts score for an image
- Higher the score, higher the abnormality
- Completely unsupervised
- Not a single label needed for training
- It however requires an outlier classes
- For example, to train the model for hand images, we need

images of non-hands, like legs, chest, etc, which is fairy
easy and cheap to obtain

Lukas Ruff, Deep One-Class Classification
http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf

Frameworks
Used:

✅ OpenCV
✅ Tensorflow

✅ Implemented
⚠ Tested
⚠ Integrated

23

Training: Deep One-Class Classification
Low Score Samples: High Score Samples:

Lukas Ruff, Deep One-Class Classification
http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf

24

Training: Convolutional Autoencoder
Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Masked Reconstruction MSE (calculated only on
non-zero parts)
Outlier score: Masked MSE / Top-K SE
Best ROC-AUC: 0.58

25

Training: Bottleneck Convolutional Autoencoder
Loss: Masked Reconstruction MSE (calculated only on
non-zero parts)
Outlier score: Masked MSE / Top-K SE
Best ROC-AUC: 0.57

Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

26

Training: Bottleneck Convolutional Autoencoder
Epoch 73: Not reconstructing extrinsic objects → A way to detect them

27

Training: Variational Autoencoder
Loss: Binary Cross Entropy (Pixelwise) + Kullback Leibler
Divergence (Latent features)
Outlier score: Loss, used for training
Best ROC-AUC: 0.53

Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Epoch 600
28

Training: Variational Autoencoder
Epoch 17: Not reconstructing obvious anomalies → A way to detect them

29

Training: Deep Convolutional GAN
Loss: Binary Cross Entropy between fake and real images
Outlier score: Discriminator output probability
Best ROC-AUC: 0.57

Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

30

Training: Deep Convolutional GAN
- Hard to choose learning rates
- Often - mode collapse (sacrifice diversity on accuracy)

31

Training: Bidirectional GAN
Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Binary Cross Entropy between fake and real images
Added self-attention layer
Outlier score: Discriminator output probability / Masked MSE
Best ROC-AUC: 0.57

\ Encoder

\

32

Training: Bidirectional GAN
- Better in reconstruction
- Often - mode collapse (sacrifice diversity on accuracy)

33

Training: Alpha-GAN
Frameworks
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Binary Cross Entropy between fake/reconstructed and
real images + Kullback Leibler Divergence (Latent features)
Added self-attention layers
Outlier score: Discriminator output probability / Masked MSE
Best ROC-AUC: 0.60

\ Encoder

Co-
discriminator

34

Training: Alpha-GAN

35

- Worse in reconstruction (hard to choose learning rate)
- Generator outputs more diverse images

Training: BiGAN & Alpha-GAN
- Main problem: not diverse generator → hard to use RMSE for outlier score

36

Comparison of Autoencoders and GANS
Unmasked Images Masked Images

Model ROC-AUC ROC-AUC APS

CAE (zdim = (512, 16, 16)) 0.45 0.58 0.58

CAE (zdim = (256, 1, 1)) 0.44 0.57 0.58

VAE 0.50 0.53 0.57

DCGAN 0.57 0.56 0.63

BiGAN - 0.57 0.66

Alpha-GAN - 0.60 0.66

37

37

Agenda

- Task & Data
- Preprocessing workflow
- Method & Models training
- Visualizations
- Future work

38

Pixelwise Loss for
Visualisation:
Abnormal hands

39

- Possible for Convolutional
Autoencoders

Pixelwise Loss for Visualisation: Normal Hand

40

Pixelwise Loss for Visualisation: Abnormal hand

41

Pixelwise Loss for Visualisation: Normal Hand

42

Agenda

- Task & Data
- Preprocessing workflow
- Method & Models training
- Visualizations
- Future work

43

Extension Possibilities
- Flexible and generic architecture
- Can be extended for other body parts with slight modifications
- For example:

- Object detection model can be extended to detect other parts and
redirect the flow to corresponding neural network

- New autoencoders can be trained and saved to find anomalies in other
type of data sets

44

Extension Possibilities: Quantity vs. Quality
- Extension of training subset

does not increase performance
- Quality matters: need to

develop more sophisticated
data-cleaning pipeline

45

Future Work
- Evaluate the usage of flow-based models
- Visualize attention maps for Self-Attentive GANs
- Image pipeline improvements:

- Few-shot semantic segmentation for hand masking
- Tuning of hand detector
- Median filters evaluation

- Models hyperparameters tuning:
- Learning rates adjustments, learning rate schedulers
- Model architecture tuning

46

Feedback and Questions?

47

Thank You for the attention

Appendix: Deep One Class Classification

48

Appendix: Finding anomaly in encoded
representation

For the initial image one the left
Encoded representation somewhat
looks like the image below.

+ represents the possible outliers as
detected by One-Class SVM algorithm

Frameworks
Used:

✅ OpenCV
✅ Tensorflow
✅ Scikit

⚠ Implemented
❌ Tested
❌ Integrated

49

