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Agenda
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- Method & Models training
- Visualizations
- Future work
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Task Allocated to Us
- Classify hand X-ray images into normal and not normal
- Because of high labelling cost → unsupervised
- Visualize problematic areas of not normal hand
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Data Provided
- Subset of MURA dataset
- Contains hand X-rays grayscale images
- Very noisy

- Size: 5543 images
- Percentage of positive 

images: 26%
- Number of patients: 1964
- Approx. 10% of images are 

mislabeled.
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Legends
✅  Implemented: The algorithm has been implemented and included in the 
repository
✅  Tested: It has been tested
✅  Integrated: It has been integrated into the pipeline and evaluated

✅  Green: Working Fine
⚠  Yellow: No major success
❌  Red: Skipped this step
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Workflow Followed
Preprocessing:

- Cropping using OpenCV
- Object detection using Tensorflow
- Semantic segmentation (Photoshop)

Learning and Prediction:

- 3 types of Autoencoders
- 3 types of GANs
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Preprocessing: Square Detection
- Idea: Crop out X-ray-scans, synthetically created for MURA  
- Based on OpenCV Contours Detection

Frameworks 
Used:

✅ OpenCV

✅ Implemented
✅ Tested
✅ Integrated
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Preprocessing: Hand Detection & Cropping
Frameworks 
Used:

✅ OpenCV
✅ Tensorflow 
object detection

✅ Implemented
✅ Tested
✅ Integrated

- Idea: Detect hand and crop, output image has centered hand 
- Based on Single shot multibox detector (SSD) with MobileNet
- Manually labeled bounding boxes for over 150 hands
- Fails for tilted images, not whole palms, two hands on one image
- Manually cropped all undetected images
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Preprocessing: Writings Detection & Removal
Frameworks 
Used:

✅ OpenCV
✅ Tensorflow 
object detection

✅ Implemented
⚠ Tested
❌ Integrated

- Idea: Detect writings and remove by inpainting
- Analogous SSD method
- Manually labeled bounding boxes for over 100 labels
- Fails for writings, which is too close to hand, tilted writings
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Preprocessing: Semantic Segmentation
Frameworks 
Used:

✅ Photoshop 
batch processing

⚠ Implemented
✅ Tested
✅ Integrated

- Idea: Segment hand and background, remove background
- DL Semantic segmentation requires labeled masks
- Tried with GrabCut, but it is hard to adapt it for all images
- We used Photoshop ‘Select Subject’ option
- Still not perfect solution
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Preprocessing: Augmentation
Frameworks 
Used:

✅ OpenCV
✅ imgaug

✅ Implemented
✅ Tested
✅ Integrated

Augmentation techniques:
- Flipping
- Rotating
- Brightness adjustment
- Zoom in/out
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Processing: Data-split
Frameworks 
Used:

✅ Scikit-learn

✅ Implemented
✅ Tested
✅ Integrated

- Unsupervised fashion means that we use only normal 
images in a training phase

- Still need to know, that images are normal
- Train is only 50% - to make test and validation balanced
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Preprocessing Pipeline: Altogether
- Centered Padding converts all images to 512x512 shape 

(also tried uniform padding)
- Min-Max Normalisation scales all pixels to [0, 1]
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Method: Outlier Detection
We discriminate between normal and abnormal cases using the following 
statistics (outlier scores):

- Reconstruction loss (CAE, BiGAN, Alpha-GAN)
- Reconstruction loss + Kullback-Leibler divergence (VAE)
- Discriminator output probability (DCGAN, BiGAN, Alpha-GAN)
- Latent features outlier detection:

- One-class SVM (CAE)
- DBSCAN (CAE)
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Training: Overview
- Unsupervised Learning:

- Non-negative matrix factorisation + DBSCAN / One-Class SVM
- Unsupervised Deep Learning:

- Deep One-Class Classification
- Convolutional Autoencoder (CAE)
- Variational Convolutional Autoencoder (VAE)
- Deep Convolutional GAN (DCGAN)
- Bidirectional GAN (BiGAN)
- Alpha-GAN (GAN + VAE)
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Training: Static Methods
Non Negative Matrix Factorisation:

An image V is factorized in W and H matrices

W and H looks like this

V V = W • H 20



Training: Static Methods

DBScan

21

One Class SVM



Training: Static Methods
Frameworks 
Used:

✅ OpenCV
✅ Scikit-learn

✅ Implemented
⚠ Tested
❌ Integrated

Reconstruction
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Training: Deep One-Class Classification
- Predicts score for an image
- Higher the score, higher the abnormality
- Completely unsupervised
- Not a single label needed for training
- It however requires an outlier classes
- For example, to train the model for hand images, we need 

images of non-hands, like legs, chest, etc, which is fairy 
easy and cheap to obtain

Lukas Ruff, Deep One-Class Classification
http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf

Frameworks 
Used:

✅ OpenCV
✅ Tensorflow

✅ Implemented
⚠ Tested
⚠ Integrated
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Training: Deep One-Class Classification
Low Score Samples: High Score Samples:

Lukas Ruff, Deep One-Class Classification
http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf
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Training: Convolutional Autoencoder
Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Masked Reconstruction MSE (calculated only on 
non-zero parts) 
Outlier score: Masked MSE / Top-K SE
Best ROC-AUC: 0.58
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Training: Bottleneck Convolutional Autoencoder
Loss: Masked Reconstruction MSE (calculated only on 
non-zero parts) 
Outlier score: Masked MSE / Top-K SE
Best ROC-AUC: 0.57

Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated
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Training: Bottleneck Convolutional Autoencoder
Epoch 73: Not reconstructing extrinsic objects → A way to detect them

27



Training: Variational Autoencoder
Loss: Binary Cross Entropy (Pixelwise) + Kullback Leibler 
Divergence (Latent features)
Outlier score: Loss, used for training
Best ROC-AUC: 0.53

Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Epoch 600
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Training: Variational Autoencoder
Epoch 17: Not reconstructing obvious anomalies → A way to detect them
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Training: Deep Convolutional GAN
Loss: Binary Cross Entropy between fake and real images
Outlier score: Discriminator output probability
Best ROC-AUC: 0.57

Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

30



Training: Deep Convolutional GAN
- Hard to choose learning rates
- Often - mode collapse (sacrifice diversity on accuracy)
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Training: Bidirectional GAN
Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Binary Cross Entropy between fake and real images
Added self-attention layer
Outlier score: Discriminator output probability / Masked MSE
Best ROC-AUC: 0.57

\ Encoder

\
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Training: Bidirectional GAN
- Better in reconstruction
- Often - mode collapse (sacrifice diversity on accuracy)

33



Training: Alpha-GAN
Frameworks 
Used:

✅ OpenCV
✅ PyTorch

✅ Implemented
✅ Tested
✅ Integrated

Loss: Binary Cross Entropy between fake/reconstructed and 
real images + Kullback Leibler Divergence (Latent features) 
Added self-attention layers
Outlier score: Discriminator output probability / Masked MSE
Best ROC-AUC: 0.60

\ Encoder

Co-
discriminator
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Training: Alpha-GAN
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- Worse in reconstruction (hard to choose learning rate)
- Generator outputs more diverse images



Training: BiGAN & Alpha-GAN
- Main problem: not diverse generator → hard to use RMSE for outlier score
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Comparison of Autoencoders and GANS
Unmasked Images Masked Images

Model ROC-AUC ROC-AUC APS

CAE (zdim = (512, 16, 16)) 0.45 0.58 0.58

CAE (zdim = (256, 1, 1)) 0.44 0.57 0.58

VAE 0.50 0.53 0.57

DCGAN 0.57 0.56 0.63

BiGAN - 0.57 0.66

Alpha-GAN - 0.60 0.66
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Pixelwise Loss for 
Visualisation: 
Abnormal hands
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- Possible for Convolutional 
Autoencoders



Pixelwise Loss for Visualisation: Normal Hand
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Pixelwise Loss for Visualisation: Abnormal hand 
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Pixelwise Loss for Visualisation: Normal Hand
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Extension Possibilities
- Flexible and generic architecture
- Can be extended for other body parts with slight modifications
- For example:

- Object detection model can be extended to detect other parts and 
redirect the flow to corresponding neural network

- New autoencoders can be trained and saved to find anomalies in other 
type of data sets
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Extension Possibilities: Quantity vs. Quality
- Extension of training subset 

does not increase performance
- Quality matters: need to 

develop more sophisticated 
data-cleaning pipeline
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Future Work
- Evaluate the usage of flow-based models
- Visualize attention maps for Self-Attentive GANs
- Image pipeline improvements:

- Few-shot semantic segmentation for hand masking
- Tuning of hand detector
- Median filters evaluation

- Models hyperparameters tuning:
- Learning rates adjustments, learning rate schedulers
- Model architecture tuning
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Feedback and Questions?
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Thank You for the attention



Appendix: Deep One Class Classification
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Appendix: Finding anomaly in encoded 
representation

For the initial image one the left
Encoded representation somewhat
looks like the image below.

+ represents the possible outliers as 
detected by One-Class SVM algorithm

Frameworks 
Used:

✅ OpenCV
✅ Tensorflow
✅ Scikit

⚠ Implemented
❌ Tested
❌ Integrated
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