
Introduction to Unix
Computing in the Applied
Mathematics Department

Chris Swierczewski
31 October 2013

Outline

1. ssh
2. Basic Unix Commands

a. directory navigation
3. Intermediate Unix Commands

a. utilities
b. process management
c. text editors

4. Advacned Unix Commands
a. program redirection
b. .bashrc

5. (Extras)

Our Equipment

● Linux Ubuntu 12.07
(non-milk coffees)
○ espresso.amath

■ x2 6-core Intel Xeon @ 3.07
GHz

■ L2 Cache (per core): 256 KB
■ L3 Cache (per proc): 12 MB
■ 24 GB RAM
■ NVIDIA Quatro 4000

● 2 GB Device Global Memory
● Double precision support
● CUDA Compatible

○ americano.amath (coming soon!)

Our Equipment

● Apple OSX Lion
(milk coffees)
○ latte.amath
○ mocha.amath
○ galao.amath

■ x2 6-core Intel Xeon @ 2.66 GHz
■ L2 Cache (per core): 256 KB
■ L3 Cache (per proc): 12 MB
■ 24 GB RAM
■ ATI Radeon HD 5870

● 1GB Device Global Memory
● Double precision support
● Not CUDA Compatible
● OpenCL Compatible

Installed Software
● Mathematical:

Matlab, Maple,
Python, Numpy,
Scipy, matplotlib

● Computational:
C/C++, FORTRAN,
Python, CUDA
(espresso only)

● Logistic: LaTeX, git,
mercurial

Remotely Connecting

● via SSH (Secure Shell)
● OSX / Linux

○ Open Terminal
○ Type the following and hit 'Enter'

$ ssh myuwnetid@espresso.amath.washington.edu

○ Enter your UW NetID password and hit 'Enter'.
(Note: password won't appear in terminal.)

● Windows
○ Download Google Chrome and Install “Secure Shell”

Demo...
(SSH'ing into espresso.amath)

A Quick Word About Dropbox

Use Dropbox to synchronize your files.

● OSX Instructions: (do the following once)
○ Physically log in to latte / mocha / galao
○ Setup using on-screen instructions
○ Lock screen (don't log out) by selecting the user list

and scrolling down to "Lock Screen"
○ you can now ssh in and DB will run

● Linux Instructions
○ ssh into espresso / americano
○ run

 $ dropbox start

(also: $ dropbox autostart y)

Basic Unix Commands

Unix-based computers
are very common in
math and science
research. Get to know
the Unix environment!

Resources:
● Using the Terminal
● Command Line
● Adv. Command Line

● $ ls
○ list directory contents

● $ pwd
○ print working/current

directory
● $ cd DIR

○ change directory to DIR
○ "~" is home, ".." is parent

● $ rm FILE
○ remove / delete file. Cannot

undo so be careful!
● $ more FILE or $ less FILE

○ view the contents of a file
● $ top [-user username]

○ view top CPU and memory
using processes. Optionally,
only those initiated / owned
by username

https://help.ubuntu.com/community/UsingTheTerminal
https://help.ubuntu.com/community/CommandlineHowto
https://help.ubuntu.com/community/AdvancedCommandlineHowto

Demo...
(basic terminal commands)

Intermediate Unix Commands
● $ history

○ shows past commands
● $ man COMMAND

○ manual page ("manpage")
for COMMAND

○ use arrow keys or 'j' / 'k' to
scroll

● $ diff FILE1 FILE2
○ compare two text files

File Management
● $ cp FILE DEST

○ copy FILE to DEST
● $ mv FILE DEST

○ move FILE to DEST
● $ du -sh DIR

○ disk usage (hard drive
space taken up) by DIR

Process Management
● $ ps [-u USERNAME]

○ list the processes started in
this terminal session

○ (each process has a PID)
○ "-u" flag shows all

processes owned by
USERNAME

● $ kill [-9] PID
○ try to kill process PID
○ use the '-9' flag to force

● $ nice -n7 COMMAND
○ run COMMAND in a "nice"

way. BE COURTEOUS TO
YOUR FELLOW USERS!

● $ renice +7 PID
○ increase the "niceness" of

process PID by 7 points

More Process Management
● Control-c

○ kill the currently running "foreground"
process

● Control-z
○ stop (but don't kill) currently running

foreground process
● $ COMMAND &

○ (include ampersand at end) runs
COMMAND in the background
allowing you to enter more commands

● $ bg
○ runs all stopped jobs in the

background
● $ jobs

○ lists all background jobs
● $ fg JOBNUMBER

○ brings JOBNUMBER to the foreground

Foreground
Process

(one at a time)

Stopped Job

Stopped Job

Stopped Job

Ctrl-Z

Background
Process

[1]

Background
Process

[2]

$ bg

$ fg 1

Demo...
(intermediate terminal commands)

Text Editors

Terminal-based text editors have a steep
learning curve but greatly improve productivity.
● nano

○ easiest to use
○ tutorial: start nano and

hit 'Control-g'
● vi / vim

○ tutorial: $ vimtutor
● emacs

○ tutorial: start emacs and
hit 'Control-h' and then
hit 't'.

Demo...
(opening text editor tutorials, editing files)

Intermediate Networking Commands

● Copy files from your computer to server

$ scp FILE myuwnetid@server:DIR/FILENAME

● nohup: execute COMMAND using nohup so it doesn't
die when you disconnect. (output redirected to file)

 $ nohup ping www.google.com &

● screen: advanced tool for working with multiple
terminals via ssh where, like in nohup, processes never
die when you disconnect (they just fade away)

Matlab

● Cannot run Matlab interactively
○ requires X-windows forwarding. (High bandwidth.)

$ ssh -X user@server

$ ssh -X myuwnetid@latte.amath.washington.edu

$ matlab -nojvm

(Matlab startup)
>> plot([1,2,3],[-1,1,0],'g')

(plot is displayed)

>>

It's best to just run scripts that save plots to file
and scp them back to your personal computer.

Demo...
(using Matlab via X-windows and -nojvm)

Controlling Program Flow
● $ COMMAND > FILE

○ redirects output of
COMMAND to FILE
(overwrites if FILE exists)

● $ COMMAND >> FILE
○ appends output of

COMMAND to end of FILE
● $ COMMAND < FILE

○ uses the contents of FILE as
input to COMMAND

○ $ sort < words.txt
● $ CMD1 | CMD2

○ "pipes" the output of CMD1
to CMD2 as input

○ $ ls | sort
● You can string commands

$ ls | sort > sorted.txt

Advanced Unix Commands
Your .bashrc File
There is a special "hidden" file in your
home directory called ".bashrc". Add
terminal commands to the end and
they will be executed every time you
log in.
e.g. add
 dropbox start
to start Dropbox upon logging in.

Other Tricks
alias ll='ls -l'
alias la='ls -a'

export PATH=~/bin:${PATH}

(add ~/bin to your "PATH" variable)

Demo...
(output redirection and a tour of .bashrc)

Questions?
Thank you!

PDB (Python DeBugger) is a tool for stepping through your
Python code line-by-line when debugging your code.

script.py

import pdb

...

pdb.set_trace()

...

From command line:

$ python script.py

Additional Tricks: Python and PDB

Navigation

l: (l)ook
n: (n)ext line
s: (s)tep into function
c: (c)ontinue to next breakpoint,
error, or end of script

Additionally, you can execute
Python commands from within
the debugger. E.g.

(pdb) print x.norm()

Additional Tricks: screen

screen is a Unix tool for
managing multiple "virtual
terminal windows" within a
single ssh session.
● no need to ssh twice so

you can have two
terminals open at once

● processes executed
from screen will continue
to run after you log off
(as long as you "detach"
screen instead of closing
it)

Command List
● $ screen

○ start screen
● Ctrl-a + d

○ "detach" screen session
(procs. will continue to run)

● $ screen -r
○ "resume" prev. detached

screen session
● Ctrl-a + c

○ "create" a new screen
window

● Ctrl-a + "
○ view a list of currently open

screen windows
● Ctrl-a + [0-9]

○ switch to screen window
number 0-9

