
Velocity in Research

CS 197 | Stanford University | Brando Miranda
cs197.stanford.edu

Slides adapted from Kanishk Gandhi & Michael Bernstein

Vectoring in Research

CS 197 | Stanford University | Brando Miranda
cs197.stanford.edu

Slides adapted from Kanishk Gandhi & Michael Bernstein

Caption

http://www.youtube.com/watch?v=ewr3d8DasBg

Administrivia
Finals are scheduled for June 7th (6/7) 7-10pm Friday STLC 115.

Talks for each project: 5 mins + ~2 mins (questions)

4

What problem are we solving?

5

“I feel like we’re just not getting anywhere.”

“This keeps dragging on and it’s not working. I’m

losing motivation.”
“I missed another submission deadline.I think my advisor is starting to lose faith.”

“Research is so much slower than industry.”

Today’s big idea: velocity
What is research velocity?

How do we achieve high velocity?

What other signals do people mistake for velocity?

6

Michael’s theory of Researcher success

To be a successful researcher, you need to master two skills
that operate in a tight loop with one another.

7

Vectoring: identifying the biggest dimension of risk in your
project right now (often assumption/wrt to main objective/H)

Velocity: rapid reduction of risk in the chosen dimension
(you want to learn ASAP – you don’t want to “build your life
on a lie”! e.g., prototype it vs build expensive infra) Today!

 not today!

What Is Velocity?

Problematic point of view
“Research is so much
slower than industry.”

9

“I missed another
submission deadline.”

We’re not making
enough progress/suck.

“I feel like we’re just not
getting anywhere.”

What research is not
1. Figure out what to do.

2. Do it.

3. Publish.

1
0

What research is
Research is an iterative process of
exploration, not a linear path from

idea to result [Gowers 2000]

What research is

1
1

Research is an iterative process of exploration, not a linear path
from idea to result [Gowers 2000]

Can be demotivated because it is not linear
Used to classes, put X energy & you get X points back

Need a Mindset shift:
failure = opportunity to learn & improve/grow
uncertainty = opportunity to learn & be curious & investigate
stuck = opportunity to be creative
Did you deliver what you committed, regardless of result?

The Swamp
I have worked on a few projects, and
almost every project has a swamp.

The Swamp: challenges that get the
project stuck for an extended length
of time

E.g.;

Model not performing well

Design not having intended effect

Engineering challenges keep
cropping up

& etc
12

Swamps make progress a poor measure
Swamps can make a project appear to have no or little progress for an
extended period of time.
Swamps make progress a bad measure/metric because you might be
completing your deliverables (e.g., experiment plots) and learning a lot,
even if things are failing!
Progress := “it’s working”, but you can’t control if experiments will work
So progress is a bad measure/metric in high uncertainty projects
Learning = $$ Gold = Failures

However, swamps are when you need to be at your most creative. You
need to try many different ideas, and rapidly, to orienteer your way out of
a swamp.

The difference between an amazing and a merely good researcher: how
effectively and rapidly you explore ways to escape the swamp. 13

Swamps make progress a poor measure

14Yoann Bourgeois

Recovering quickly & learning better measure/metric!

http://www.youtube.com/watch?v=x_DA3dgRSrw

Enter velocity
Drawn from theory and practice of rapid prototyping

Buxton, Sketching User Experiences

Schön, The Reflective Practitioner

Houde and Hill, What Do Prototypes Prototype?

“Enlightened trial and error succeeds over the planning of
the lone genius.” - Tom Kelley

15

Velocity vs. progress
Progress is an absolute delta of your position from the last
time we met. How far have you gotten?

Velocity is a measure of the how much you’ve learned in
that time.

If you tried a ton of creative different ideas and they all
failed…

that’s low progress
but high velocity

16

GREAT JOB!!!

Why is velocity a better measure?
Because we are in a high uncertainty landscape, so all you can
guarantee is to learn quickly, to learn what is the “correct” thing to be
doing & save effort/time
Because failures often mean learning.

Because we likely needed to experience those failures to eventually get
to a success: you’re learning the landscape.

Because the worst outcome is not failure, but tunneling unproductively -
in the “wrong” direction

That’s low progress
and low velocity

17

 this is disappointing

How do I achieve
high velocity?

Restating our goal, precisely
Each week’s effort — a draft paper introduction, a user interface, an
engineered feature, an evaluation design — is on the path toward
understanding the research question.

We have a question to answer this week: Will our hunch work in a
simple case? Is assumption X valid? Will this revised model
overcome the problematic issue? Can we write a proof for the
simple case? We’ve chosen this week’s question that we’re trying to
answer carefully.

Velocity is the process of answering
that question as rapidly as possible.

19

 Choosing this question is the
 process of vectoring.

Vectoring vs Velocity
Separation of concerns

Vectoring: what is the most risky uncertain idea that can make the
project fail?

e.g. Is assumption X valid?

Usually a more abstract idea

Velocity: what exactly should we prototype concretely to learn & derisk
quickly

e.g., Build a mock video game in with pen and paper, train small model

Usually concrete, targets the core directly and prototypes periphery 20

Approach: core vs. periphery
Achieving high velocity means sprinting to answer this
week’s question, while minimizing all other desiderata for
now.

This means being clear with yourself on what you can
ignore:

Core: the goal that needs to be achieved in order to answer the
question

Periphery: the goals that can be faked, prototyped or assumed, or
subsetted, or mocked in, so we can focus on the core question.

21

Core-periphery mindset
The week’s goal is not a demo.

Though this is what is tempting: think, select, and then create.

But this means working on everything both in the core and in the periphery.

The week’s goal is instead an answer to a question - learn.

To answer a question, you don’t need to address all the issues in the
periphery. Just focus on what’s in the core.

Make strong assumptions about everything that’s in the periphery: use an
easy or smaller subset of the data, make simplifying assumptions while
working on your proof, ignore other nagging questions for the moment

Be creative & “ruthless” about quickly derisking! 22

Core-periphery mindset
I’m dedicating a second slide to this concept because it’s the
key.

Your approach should be, necessarily, incomplete. Do not create
a mockup or a scale model. Perfection is your enemy!

Instead, derive everything from your current question:

Will this approach retain all users?
Will this measure correlate with my gut observations?
Will this engineering approach be satisfactory?

Be rapid. Be ruthless. Strip out or fake everything not required to
answer the question. 23

Core-periphery mindset
Seriously: I’m dedicating a third slide to this.

Answer questions, don’t engineer. This tends to rankle
essentially every facet of your undergraduate training/classes.

Very dangerous to feel you achieved something because you finished
coding.

You achieved something if you answered a question, e.g., produced an
experiment plot, i.e.: $$ Gold = experiments to learn from

Too often, people pursue perfection in the first pass: perfect drafts,
perfectly engineered software, perfect interaction design.

Remember: the goal is to answer the question, not to build that part of
your system permanently (yet). 24

Prototypes of
the
original
Microsoft
mouse.

Each one
implicitly
answering a
question.

What question
were they asking?

What did they
trade off?

All together now
Each week, we engage in vectoring to identify the biggest
unanswered question. This should be the focus of your velocity
sprint for the week.

To hit high velocity, be strategic about stripping out all other
dependencies, faking what you need to, etc., in order to
answer the question.

Be prepared to iterate multiple times within the week!

27

Let’s Try It

Let’s try it out…

Get in groups of 3–4, you’ll have two minutes to discuss
each question.

29

Emergence in LLMs?
Assumption: Everyone thinks emergent
capabilities (sharp unpredictable jumps
in performance) of LLMs is a
fundamental property of scaling AI
models

30
Hypothesis: authors had a hunch it was
mainly due to other factors

Emergence in LLMs?
Hypothesis: Emergent Capabilities
(unpredictable jumps) were possibly due
to different factors than fundamental
properties of scaling AI models

Vector (highest direction of risk):

Is it due to model scoring metric?

How do we test it as quickly as
possible?

31

Emergence in LLMs?
Vector: emergence due model scoring
metric?

How do we test it as quickly as possible?

One change; the scoring function

We chose modular arithmetic e.g., quicker
and smaller data set to run vs say Multi-task
NLU

We could generate data for task, so we
were in control of size and speed to learn

Use easily accessible models, GPT3.5 API
quicker than using OS LLMs in a cluster
e.g., GPU memory issues (engineering) 32

Emergence in LLMs?
Vector: emergence due model scoring metric?

How do we test it as quickly as possible? “$$
cash” = experiment = “learning” (not engineering)

One change, change the scoring function

33

Emergence in LLMs?
New Vector: emergence due size of test set?
Models that are too small might have 10^-3

chance to get something right but if your test set
gas 10 examples, your model will score exactly
zero

How do we test it as quickly as possible?

“$$ cash” = experiment = “learning” (not
engineering)

Velocity:

Increase test set for modular arithmetic (we have
control!)

Persian QA bad idea – you need to hire people
that speak Persian! 34

Emergence in LLMs?
New Vector: emergence due size of test set?

Velocity (prototype, learn quickly):

Increase test set for modular arithmetic (we have
control!) & ue GPT3.5

Persian QA bad idea – you need to hire people
that speak Persian!

Accuracy, not zero anymore! $$ == Experiments!

35

Social debugging: flash
organizations
They had a problem of online workers not
being as good as their Upwork profile
suggested. They wanted workers who
were experts at Angular, Django, UI, UX,
marketing, etc, but often in practice they
were not as good as they advertised.

Had a hunch that giving workers ~1hr
starter tasks would allow us to vet them.

How do you test this hunch? 36

They picked a small number of domains and
manually generated quick test tasks for them. We
posted these as jobs, giving a time limit. We
manually evaluated the results.

They didn’t care about generalizability or
software integration.

Later, they asked: could this scale to hundreds of
people and tens of domains?

37

Social debugging: flash
organizations

Mutual Exclusivity
Children use the mutual exclusivity (ME) bias
to help disambiguate how words map to
referents, assuming that if an object has one
label then it does not need another.

We had a hunch that neural networks won’t
show this bias.

How do you quickly test this?

38

Mutual Exclusivity
We used a rough simulation!

Map a one-hot to vector to another
one-hot vector.

Train a small neural network, ~5 minutes
locally.

Next Step: Does this work with more
realistic data? Can small variations in
training change this? 39

Engineering: Dream Team
This project used multi-armed bandits to
identify over several rounds of interaction
whether teams should be flat or hierarchical,
supportive or critical, etc. But we didn’t
know: could these multi-armed bandits
actually converge fast enough to be useful?

We had a rough implementation of the
multi-armed bandits, but it wasn’t
production ready for interacting with teams.

40

We used a rough simulation! Assuming
some roughly accurate numbers in how
much each team benefited from each
bandit setting, we generated teams and
simulated the bandits over a few rounds.

The answer: they converged quickly
enough that this might work!

(The next step: wizard of oz the interface,
so we could test it “for real” without
building integrating software.) 41

Engineering: Dream Team

Not all data is good
We found that when multiple
people try to teach a robot how to
do the same task, the robot tends to
be worse at learning the task.

We had a hunch that inconsistent
actions in similar situations were the
cause of this.

What is the quickest way to test
this?

42

Teaching users to be better teachers

In a 2d maze, the demonstration
either went right and then up (RU)
or up and then right (UR).

Then I either used all the data, or
just one ‘style’ of data.

Next: How do we identify
‘bad’ data?

43

44

We sketched out a few ideas and then hired Upwork
designers to create some mocks of what they might
look like. (We decided it wasn’t cool enough and
dropped the project for the time being.)

theory — piecework
We wanted to understand how the history of piecework would
explain unanswered questions in crowd work:
- Complexity Limits of On–Demand Work
- Decomposing Work
- Workers’ Relationships to their Work
And maybe there might be others, we thought?

Does the piecework history help us explain these?

4
5

theory — piecework
Do a quick exploration of each question. Try writing a short white
paper for it — less than a page. Aim to write three or more.

Don’t worry about final quality. Our goal is to mainly see if “there’s a
there there”: if it’s interesting enough to go deeper.

4
6

Main Take away
Once a direction of highest risk is chosen (Vector)

What is the quickest way to learn about the idea?

Prototype the periphery, choose the easiest task

Focus on the core

Let’s Try It

Your turn
Pair up with someone not on your project.

5 min each person: describe your project’s current state, the
current question you’re trying answer. Brainstorm together
how to increase velocity.

Afterwards, we’ll share out.

49

A reminder: the algorithm
1. Articulate the question you’re answering (vector).

2. Decide what’s absolutely core to answering that
question.

3. Decide what’s peripheral.

4. Decide the level of fidelity that is absolutely necessary.

5. Go — but be open to reevaluating your assumptions as
you go.

6. Loop with a new question. 50

Tips and tricks

“I’m being low velocity.”
Velocity = distance / time

So, if your velocity is low, you have two options:

1. Cover more distance: habits that can get you further in the
same time (e.g., “try harder”, “be a better engineer”)

2. Decrease the time: prototype more effectively

52

 You’re typically already maxed out on this.

 WIN. Prototype more narrowly, lower your
 fidelity expectations (e.g., spit out any draft)

“I’m being low velocity.”
Velocity = distance / time, if your velocity/learning is low, you can:

1. Cover more distance: Only ~linear gains given fix time spent

2. Decrease the time: gives fast gains, especially early on!
‘(eventually it does plateau)

53

fastest is to not do [t=0] → ∞

or do quickly [t<1] (steep!)

Extreme1: you get infinite velocity, t=0
suggests don’t do periphery if you can!

Extreme2: less time t<1 → faster
velocity!

Fast gains, less
time spent e.g.,
when t=0, t<1

On Tiktok or Twitter or E-mail… ?
This signals a lack of focus, and is a pretty
certain predictor that you’re in a swamp.

It means you’re prototyping too broadly: you’re unfocused!
focus your goal.

Or you’re requiring too high a level of fidelity: you have
unreasonable standards! lower your expectations.

Develop an internal velocity sensor, and as soon as you
recognize this, apply one of the two rules.

Focus or lower fidelity 54

Lowering standards: parallelism
Too often, we suffer from what’s known in the literature as
fixation: being certain in an idea and pursuing it to the exclusion
of all else. We cannot separate ego from artifact.

Instead, to answer the question, it’s often best to explore
multiple approaches in parallel.

“While the quantity group was busily churning out piles of work—and
learning from their mistakes—the quality group had sat theorizing about
perfection, and in the end had little more to show for their efforts than
grandiose theories and a pile of dead clay.”
— Bayles and Orland, 2001

55

Corollary 1: pivoting
Velocity is why cutting yourself off short and pivoting to a
new project can be so dangerous in research.

Typically people pivot after a week in the swamp (the “fatal flaw
fallacy”), rather than iterating with high velocity out of the swamp.

I promise that the project you pivot to will have a swamp
too.

Learn to increase velocity and prototype your way out of
the swamp faster, instead of seeking out a swampless
project.

56

Corollary 2: technical debt
Technical debt := “cost of taking too many shortcuts”
Obviously, at some point you need to make sure you’re not too
deep in technical debt, design debt, or writing debt.

But luckily, most people can only run their processors hot for a few
hours a day. Everything I’ve described takes a lot out of you.

When you’re out of creative cycles, spend time maturing other parts
of your project that are no longer open questions (help time [t]
decrease later). Or, sometimes we reach a phase where we pause
prototyping and focus on refinement and execution for a bit.

Tip: Talking to others/presenting in lab can help in creativity too! 57

Corollary 3: More tips
Tip: walks with no headphones

1. You can be more creative on a fast prototype (velocity)
2. You can be more creative to think of possible unknowns (vector)
3. You can even refine your attempt when you are commuting

Reflect often on what you learned and how you could have been
more aggressive to prototype

Honesty: Was that really necessary? What did I truly get from this?

Mindset: Failure is good! Because learning is good!

58

Why is velocity so
important?

Great research requires
high velocity
Don’t let 6-12 month paper deadlines obscure the velocity at which
research needs to move in order to succeed.

If you want to achieve a high impact idea, you need to try a lot of
approaches and refine and fail a lot. You want to do that as quickly as
possible due to uncertainty.

If you can prototype and learn and fail 5x as quickly as the next person,
you will be able to achieve far more (de) risky and impactful research.

60

Takeaways, in brief

1) The swamp is real, and it
slows visible progress.

2) Velocity is a far better
measure/metric of yourself than
progress, and it’s something you
actually have control over.
(you can’t control experiments
working in unknown envs)

3) Achieve high velocity by
being clear what question you’re
answering, and focusing
ruthlessly on the core of that
question while stripping out the
periphery.

4) If you’re low velocity,
velocity = distance / time. Either
increase distance (rarely
possible) or decrease time (often
possible: you’re too broad or
too perfectionist or doing too
much.

And finally…
Get into your project groups and discuss your strategy for
velocity. What’s working? What can be improved?

66

Slide content shareable under a Creative Commons
Attribution-NonCommercial 4.0 International License.

67

Velocity in Research

