
A Hacker’s Guide to 
Speculative Decoding in vLLM

CUDA MODE talk by Cade Daniel



Introductions

● Working on LLM inference in vLLM
● Software Engineer at Anyscale
● Previously, model parallelism systems at AWS 

○ https://arxiv.org/abs/2111.05972 
● Feel free to reach out!

○ https://x.com/cdnamz 

https://www.anyscale.com/
https://arxiv.org/abs/2111.05972
https://x.com/cdnamz


Topics

● vLLM’s core principles
● Spec decode background
● Spec decode framework intro (for contributors)
● Future contribution ideas
● Q&A (30min)



vLLM’s core principles

● Ease-of-use
● Great performance
● Hardware agnosticity



Easy-to-use
https://github.com/vllm-project/vllm

$ pip install vllm

17K Stars

https://github.com/vllm-project/vllm


Performance features

● PagedAttention/tensor parallelism
● Optimized multi-LoRA
● Chunked prefill
● Automatic prefix caching
● Guided decoding
● Quantization (fp8 WIP, and others)
● Pipeline-parallelism (WIP)
● Prefill disaggregation (WIP)

More contributions welcome!

Great performance



Hardware agnosticity

Source: AMD Presents: Advancing AI
7

Current backends:

● NVIDIA, AMD, 
Inferentia, TPU 
(WIP), CPU 

https://www.youtube.com/watch?v=tfSZqjxsr0M&t=2389s&ab_channel=AMD


Topics

● vLLM’s core principles
● Spec decode background
● Spec decode framework intro (for contributors)
● Future contribution ideas
● Q&A (30min)



Spec decode background

● Recommended reading: Andrej Karpathy’s tweet on speculative decoding 
○ https://x.com/karpathy/status/1697318534555336961 

● Memory-boundedness
○ In memory-bound LLM inference, the full GPU compute capacity is underutilized
○ The unused compute can be used, if we can find a way to use it

● Not all parameters required for every token
○ Do we really need 70B parameters to answer “What is the capital of California”? Probably 

not…
● Idea:

○ Try to predict what large model will say
○ Get probabilities of predictions
○ Use heuristic to accept or rejection the predictions based on probabilities

https://x.com/karpathy/status/1697318534555336961


Spec decode background

Source: “Accelerating LLM 
Inference with Staged Speculative 
Decoding” 
https://arxiv.org/pdf/2308.04623 

https://arxiv.org/pdf/2308.04623


How to evaluate speedup?

● Recommended reading: “Fast Inference from Transformers via Speculative 
Decoding” https://arxiv.org/pdf/2211.17192 

https://arxiv.org/pdf/2211.17192


How to evaluate speedup?

● Simplified version:
○ Inter-token latency = step time / number of tokens per step in expectation
○ Example without speculative decoding: 30ms / 1 → 1 token per 30ms
○ Example with speculative decoding: 40ms / 2.5 → 1 token per 16ms

● Key factors
○ How long does it take to propose?
○ How accurate are the proposals?
○ How long does it take to verify / other spec framework overheads?

● In practice:
○ https://github.com/vllm-project/vllm/blob/main/vllm/spec_decode/metrics.py 
○ Acceptance rate – “How aligned is the proposal method with the target model?”
○ System efficiency – “How efficient is the deployment compared to 100% acceptance rate?”

https://github.com/vllm-project/vllm/blob/main/vllm/spec_decode/metrics.py


Losslessness

● Is the output of speculative decoding different than the target model?
○ TL;DR No if using rejection sampling, subject to hardware numerics
○ Diagram https://github.com/vllm-project/vllm/pull/2336 
○ Yes if using lossly sampling technique, e.g. Medusa’s typical acceptance (but higher 

acceptance rate!)
● Recommended reading (proof of losslessness): Accelerating Large Language 

Model Decoding with Speculative Sampling 

https://github.com/vllm-project/vllm/pull/2336
https://arxiv.org/pdf/2302.01318
https://arxiv.org/pdf/2302.01318


Topics

● vLLM’s core principles
● Spec decode background
● Spec decode framework intro (for contributors)
● Future contribution ideas
● Q&A (30min)



Current status in vLLM

● Spec decode framework is complete with correctness tests
● Supports draft model, ngram, Medusa (soon), IBM’s MLPSpeculator (soon)

○ Other features like skipping speculation for some sequences, dynamic speculative decoding
● Missing performance optimizations to achieve Anyscale’s internal fork 

performance
○ https://github.com/vllm-project/vllm/issues/4630 
○ Llama2 70B 50% ITL reduction on BS=1..8 with temperature 1.0

https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/tests/spec_decode/e2e/test_multistep_correctness.py#L1
https://github.com/vllm-project/vllm/issues/4630


Current status in vLLM



Spec decode framework

● SpecDecodeWorker
○ Proposers (ngram, draft model)
○ Scorer (top-1 scoring)
○ Verifier (rejection sampling)



Spec decode framework



Spec decode framework: links

● SpecDecodeWorker 
○ https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/s

pec_decode/spec_decode_worker.py#L1
● Proposers

○ Draft model proposer 
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/s
pec_decode/multi_step_worker.py#L1 

○ Ngram proposer 
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/s
pec_decode/ngram_worker.py#L1 

● Verifier
○ Rejection sampler 

https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/
model_executor/layers/rejection_sampler.py#L1

○ WIP typical acceptance https://github.com/vllm-project/vllm/issues/5015 

https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/spec_decode_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/spec_decode_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/multi_step_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/multi_step_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/ngram_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/ngram_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L1
https://github.com/vllm-project/vllm/issues/5015


● Top-1: proposal method suggests 1 token per sequence per slot
● Top-k: proposal method suggests k tokens per sequence per slot
● Recommended reading

○ https://sites.google.com/view/medusa-llm 
○ https://arxiv.org/pdf/2305.09781 
○ https://www.together.ai/blog/sequoia 

● Currently only top-1 proposal and scoring is supported
○ Top-k is a future work
○ Most aggressive speedups require top-k attention masking
○ FlashInfer going to support masking
○ https://github.com/vllm-project/vllm/issues/3960 

Spec decode framework: top1 vs top-k “tree attention”

https://sites.google.com/view/medusa-llm
https://arxiv.org/pdf/2305.09781
https://www.together.ai/blog/sequoia
https://github.com/vllm-project/vllm/issues/3960


● Recommended reading: https://arxiv.org/pdf/2302.01318 
● Bonus token: All speculative tokens may be accepted. We can sample from 

target model distribution normally in this case
○ → we get an additional token in the happy-path!

● Recovered token: If all tokens are rejected, we can use math trick to sample a 
correct token from the target model distribution

○ → We always get >=1 token
● Logic is in rejection sampler / SpecDecodeWorker

○ https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/
model_executor/layers/rejection_sampler.py#L210 

Spec decode framework: “Bonus token” and “recovered 
token”

https://arxiv.org/pdf/2302.01318
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210


Spec decode framework: “Bonus token” and “recovered 
token”



● Recommended reading: https://arxiv.org/pdf/2302.01318 
● Bonus token: All speculative tokens may be accepted. We can sample from 

target model distribution normally in this case
○ → we get an additional token in the happy-path!

● Recovered token: If all tokens are rejected, we can use math trick to sample a 
correct token from the target model distribution

○ → We always get >=1 token
● Logic is in rejection sampler / SpecDecodeWorker

○ https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/
model_executor/layers/rejection_sampler.py#L210 

Spec decode framework: “Bonus token” and “recovered 
token”

https://arxiv.org/pdf/2302.01318
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210


Spec decode framework: “Bonus token” and “recovered 
token”

https://arxiv.org/pdf/2211.17192 

https://arxiv.org/pdf/2211.17192


● Problem: Scoring speculative tokens generates KV. How can we save 
accepted KV to skip regeneration and reduce FLOPs requirements?

● Recommended reading: What is lookahead scheduling in vLLM?
● TL;DR:

○ vLLM’s scheduler allocates additional space for KV
○ The SpecDecodeWorker uses the space to store KV of speculative tokens
○ Accepted token KV is stored correctly

Lookahead scheduling

https://docs.google.com/document/d/1Z9TvqzzBPnh5WHcRwjvK2UEeFeq5zMZb5mFE8jR0HCs/edit#heading=h.1fjfb0donq5a


● Problem: As batch size increases, spare FLOPs is reduced. How can we 
ensure spec decode performs no worse than no spec decode?

● Recommended reading: https://github.com/vllm-project/vllm/issues/4565 
○ Work by Lily Liu and Cody Yu

● TL;DR
○ Based on the batch size, adjust which sequences have speculations (or disable spec dec 

altogether)
○ Future work: per-sequence speculation length

Dynamic speculative decoding

https://github.com/vllm-project/vllm/issues/4565


Dynamic speculative decoding

Source: Xiaoxuan Liu



● Problem: As batch size increases, spare FLOPs is reduced. How can we 
ensure spec decode performs no worse than no spec decode?

● Recommended reading: https://github.com/vllm-project/vllm/issues/4565 
○ Work by Lily Liu and Cody Yu

● TL;DR
○ Based on the batch size, adjust which sequences have speculations (or disable spec dec 

altogether)
○ Future work: per-sequence speculation length

Dynamic speculative decoding

https://github.com/vllm-project/vllm/issues/4565


● Problem: How to support scoring when PagedAttention only supports 1 query 
token per sequence?

● Recommended reading: Optimizing attention for spec decode can reduce 
latency / increase throughput

● TL;DR
○ We create “virtual sequences” in SpecDecodeWorker each with 1 query token
○ This expands the batch (and duplicates KV loads in the attention layers)
○ We can remove this with an attention kernel which supports PagedAttention + multiple query 

tokens per sequence
○ Contact https://github.com/LiuXiaoxuanPKU for more information

Batch expansion

https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://github.com/LiuXiaoxuanPKU


Batch expansion



● Problem: How to support scoring when PagedAttention only supports 1 query 
token per sequence?

● Recommended reading: Optimizing attention for spec decode can reduce 
latency / increase throughput

● TL;DR
○ We create “virtual sequences” in SpecDecodeWorker each with 1 query token
○ This expands the batch (and duplicates KV loads in the attention layers)
○ We can remove this with an attention kernel which supports PagedAttention + multiple query 

tokens per sequence
○ Contact https://github.com/LiuXiaoxuanPKU for more information

Batch expansion

https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://github.com/LiuXiaoxuanPKU


● Problem: How can we validate correctness of spec decode?
● TL;DR:

○ E2E: When temperature==0, we expect equality with and without spec decode
○ Rejection sampler unit tests (output distribution does not change regardless of draft/target 

probabilities))
● You can rely on these tests when contributing

○ https://github.com/vllm-project/vllm/tree/main/tests/spec_decode 
○ https://github.com/vllm-project/vllm/tree/main/tests/spec_decode/e2e 

Testing

https://github.com/vllm-project/vllm/tree/main/tests/spec_decode
https://github.com/vllm-project/vllm/tree/main/tests/spec_decode/e2e


Topics

● vLLM’s core principles
● Spec decode background
● Spec decode framework intro (for contributors)
● Future contribution ideas
● Q&A (30min)



● More engineering
○ Retrieval-acceleration https://arxiv.org/html/2401.14021v1 
○ Chunked prefill + spec decode
○ Prefix caching + spec decode
○ Guided decoding + spec decode
○ Inferentia / TPU / CPU support

● More modeling
○ Meta-model for speculation length
○ Meta-model for speculation type

● Large / mixed engineering+modeling
○ Multi-LoRA draft model (specialize to domains)
○ Online learning draft model https://arxiv.org/abs/2310.07177 
○ Batched parallel decoding https://github.com/vllm-project/vllm/issues/4303 

Future contribution ideas

https://arxiv.org/html/2401.14021v1
https://arxiv.org/abs/2310.07177
https://github.com/vllm-project/vllm/issues/4303


Thank you!

● Many people contributed
○ Lily Liu, Cody Yu, Antoni Baum, vLLM creators, Vikas Ummadisetty, Chen Shen, Sang Cho
○ Many others



Topics

● vLLM’s core principles
● Spec decode background
● Spec decode framework intro (for contributors)
● Future contribution ideas
● Q&A (30min)


