A Hacker’'s Guide to
Speculative Decoding in vLLM

__ CUDA MODE talk by Cade Daniel




Introductions

e \Working on LLM inference in vLLM
e Software Engineer at Anyscale

e Previously, model parallelism systems at AWS
o https:/arxiv.org/abs/2111.05972

e Feel free to reach out!
o https://x.com/cdnamz



https://www.anyscale.com/
https://arxiv.org/abs/2111.05972
https://x.com/cdnamz
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vLLM's core principles

e Ease-of-use
e Great performance
e Hardware agnosticity



Easy-to-use
O https://github.com/vllim-project/vllm
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https://github.com/vllm-project/vllm

Great performance

Performance features

PagedAttention/tensor parallelism
Optimized multi-LoRA

Chunked prefill

Automatic prefix caching

Guided decoding

Quantization (fp8 WIP, and others)
Pipeline-parallelism (WIP)

Prefill disaggregation (WIP)

More contributions welcome!



Hardware agnosticity

Current backends:

e NVIDIA, AMD,
Inferentia, TPU
(WIP), CPU

Source: AMD Presents: Advancing AI



https://www.youtube.com/watch?v=tfSZqjxsr0M&t=2389s&ab_channel=AMD
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Spec decode background

e Recommended reading: Andrej Karpathy’s tweet on speculative decoding
o https://x.com/karpathy/status/1697318534555336961
e Memory-boundedness
o In memory-bound LLM inference, the full GPU compute capacity is underutilized
o The unused compute can be used, if we can find a way to use it
e Not all parameters required for every token
o Do we really need 70B parameters to answer “What is the capital of California”? Probably
not...
e I|dea:

o Try to predict what large model will say
o Get probabilities of predictions
o Use heuristic to accept or rejection the predictions based on probabilities



https://x.com/karpathy/status/1697318534555336961

Spec decode background

def below_threshold(l: 1list, t: int):
"""Return True if all numbers in the list 1 are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False

if isinstance(l, list):
return True
else:
if t <= 1 < below_threshold(l, t):
return True
else:
# If the first 1 element of 1 is an integer, then it/ is
# the whole range of integers.
if not isinstance(1[0], list):
return True
else:
# If the first 1 element of 1 is a str, then it is
# the whole string.
if hasattr(l, 'findlen'):
return findlen(l)
return False

: int, max:tnt) ->/int:

Figure 3: A visualization of the origin of tokens in an example . _
T=1 HumanEval completion. Green background originates with Source: Acceleratlng LLM

the N-gram draft? model, blue the draft model, and red the oracle : :
model. (Of course, all tokens are eventually checked by the oracle Inference with Staged SpeCUlatlve

model.) Obvious tokens — like whitespace — are preferentially Decoding”
accelerated relative to difficult ones. https://arxiv.ora/pdf/2308.04623



https://arxiv.org/pdf/2308.04623

How to evaluate speedup?

e Recommended reading: “Fast Inference from Transformers via Speculative
Decoding” https://arxiv.org/pdf/2211.17192
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Figure 4. The speedup factor and the increase in number of arith-
metic operations as a function of « for various values of +.


https://arxiv.org/pdf/2211.17192

How to evaluate speedup?

e Simplified version:
o Inter-token latency = step time / number of tokens per step in expectation
o Example without speculative decoding: 30ms /1 — 1 token per 30ms
o Example with speculative decoding: 40ms /2.5 — 1 token per 16ms

e Key factors
o How long does it take to propose?
o How accurate are the proposals?
o How long does it take to verify / other spec framework overheads?

e In practice:
o https://qithub.com/vlim-project/vliim/blob/main/vlim/spec_decode/metrics.py
o Acceptance rate — “How aligned is the proposal method with the target model?”
o System efficiency — “How efficient is the deployment compared to 100% acceptance rate?”



https://github.com/vllm-project/vllm/blob/main/vllm/spec_decode/metrics.py

Losslessness

e Is the output of speculative decoding different than the target model?

o TL;DR No if using rejection sampling, subject to hardware numerics

o Diagram https://github.com/vlim-project/vlim/pull/2336

o Yes if using lossly sampling technique, e.g. Medusa’s typical acceptance (but higher
acceptance rate!)

e Recommended reading (proof of losslessness): Accelerating Large Language
Model Decoding with Speculative Sampling



https://github.com/vllm-project/vllm/pull/2336
https://arxiv.org/pdf/2302.01318
https://arxiv.org/pdf/2302.01318
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Current status in vLLM

e Spec decode framework is complete with correctness tests

e Supports draft model, ngram, Medusa (soon), IBM’s MLPSpeculator (soon)
o  Other features like skipping speculation for some sequences, dynamic speculative decoding

e Missing performance optimizations to achieve Anyscale’s internal fork

performance

o https://qithub.com/vlim-project/vliim/issues/4630
o Llama2 70B 50% ITL reduction on BS=1..8 with temperature 1.0



https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/tests/spec_decode/e2e/test_multistep_correctness.py#L1
https://github.com/vllm-project/vllm/issues/4630

Current status in vLLM
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Spec decode framework

e SpecDecodeWorker
o Proposers (ngram, draft model)
o Scorer (top-1 scoring)
o Verifier (rejection sampling)



Spec decode framework

Propose Score Verify
Inputs: Inputs: Inputs:
e  Prefix e  Prefix e  Speculative token ids
| * Speculative tokens | * Probabilities according to proposer
Outputs: e  Probabilities according to target
e  Speculative tokens Qutputs:
e  Probabilities of speculative tokens e  Probabilities of speculative tokens Outputs:
(according to proposer) (according to target model) e  Accepted tokens

Proposer implementations

Verification implementations

Draft model (staged, tree, cascading)

Medusa / EAGLE

BiTA (prompt tunin

n-gram Jacobi (Lookahead)

Input-grounded speculation

RAG-grounded speculation

Note: multiple proposers can be combined, e.g.
medusa + RAG-grounded)

Lossless rejection sampling

Lossy rejection sampling

“Typical acceptance” (lossy medusa)
Greedy acceptance




Spec decode framework: links

e SpecDecodeWorker
o https://qithub.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vilim/s
pec decode/spec decode worker.py#L1

e Proposers
o Draft model proposer
https://qithub.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vlim/s
pec_decode/multi_step worker.py#L1
o Ngram proposer
https://github.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vlim/s
pec_decode/ngram_worker.py#L 1

e \erifier
o Rejection sampler
https://github.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vliim/
model_executor/layers/rejection_sampler.py#L 1
o  WIP typical acceptance https://github.com/vlim-project/vlim/issues/5015



https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/spec_decode_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/spec_decode_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/multi_step_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/multi_step_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/ngram_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/spec_decode/ngram_worker.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L1
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L1
https://github.com/vllm-project/vllm/issues/5015

Spec decode framework: top1 vs top-k “tree attention”

e Top-1: proposal method suggests 1 token per sequence per slot
e Top-k: proposal method suggests k tokens per sequence per slot

e Recommended reading
o https://sites.google.com/view/medusa-lim
o https://arxiv.org/pdf/2305.09781
o https://www.together.ai/blog/sequoia

e Currently only top-1 proposal and scoring is supported
Top-k is a future work

Most aggressive speedups require top-k attention masking
Flashinfer going to support masking
https://qithub.com/vlim-project/vlim/issues/3960

o O O O



https://sites.google.com/view/medusa-llm
https://arxiv.org/pdf/2305.09781
https://www.together.ai/blog/sequoia
https://github.com/vllm-project/vllm/issues/3960

Spec decode framework: “Bonus token” and “recovered
token”

Recommended reading: https://arxiv.org/pdf/2302.01318
Bonus token: All speculative tokens may be accepted. We can sample from
target model distribution normally in this case

o — we get an additional token in the happy-path!
Recovered token: If all tokens are rejected, we can use math trick to sample a
correct token from the target model distribution

o — We always get >=1 token

Logic is in rejection sampler / SpecDecodeWorker
o https://qithub.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vilim/
model executor/layers/rejection sampler.py#L210



https://arxiv.org/pdf/2302.01318
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210

Spec decode framework: “Bonus token” and “recovered
token”

k=3, top-1 (k+1)x magnification A|lB|1
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Spec decode framework: “Bonus token” and “recovered
token”

Recommended reading: https://arxiv.org/pdf/2302.01318
Bonus token: All speculative tokens may be accepted. We can sample from
target model distribution normally in this case

o — we get an additional token in the happy-path!
Recovered token: If all tokens are rejected, we can use math trick to sample a
correct token from the target model distribution

o — We always get >=1 token

Logic is in rejection sampler / SpecDecodeWorker
o https://qithub.com/vlim-project/vlim/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vilim/
model executor/layers/rejection sampler.py#L210



https://arxiv.org/pdf/2302.01318
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210
https://github.com/vllm-project/vllm/blob/37464a0f745a0204da7443d2a6ef4b8f65e5af12/vllm/model_executor/layers/rejection_sampler.py#L210

Spec decode framework: “Bonus token” and “recovered

token”
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Figure 1. Our technique illustrated in the case of unconditional language modeling. Each line represents one iteration of the algorithm.
The green tokens are the suggestions made by the approximation model (here, a GPT-like Transformer decoder with 6M parameters
trained on Im1b with 8k tokens) that the target model (here, a GPT-like Transformer decoder with 97M parameters in the same setting)
accepted, while the red and blue tokens are the rejected suggestions and their corrections, respectively. For example, in the first line the
target model was run only once, and 5 tokens were generated.

https://arxiv.orq/pdf/2211.17192



https://arxiv.org/pdf/2211.17192

Lookahead scheduling

e Problem: Scoring speculative tokens generates KV. How can we save
accepted KV to skip regeneration and reduce FLOPs requirements?

e Recommended reading: What is lookahead scheduling in vVLLM?

e TL:DR:

o VLLM’s scheduler allocates additional space for KV
o The SpecDecodeWorker uses the space to store KV of speculative tokens

o Accepted token KV is stored correctly



https://docs.google.com/document/d/1Z9TvqzzBPnh5WHcRwjvK2UEeFeq5zMZb5mFE8jR0HCs/edit#heading=h.1fjfb0donq5a

Dynamic speculative decoding

e Problem: As batch size increases, spare FLOPs is reduced. How can we
ensure spec decode performs no worse than no spec decode?

e Recommended reading: https://github.com/vlim-project/vliim/issues/4565
o  Work by Lily Liu and Cody Yu

e TL:DR
o Based on the batch size, adjust which sequences have speculations (or disable spec dec
altogether)

o Future work: per-sequence speculation length


https://github.com/vllm-project/vllm/issues/4565

Dynamic speculative decoding
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Dynamic speculative decoding

e Problem: As batch size increases, spare FLOPs is reduced. How can we
ensure spec decode performs no worse than no spec decode?

e Recommended reading: https://github.com/vlim-project/vliim/issues/4565
o  Work by Lily Liu and Cody Yu

e TL:DR
o Based on the batch size, adjust which sequences have speculations (or disable spec dec
altogether)

o Future work: per-sequence speculation length


https://github.com/vllm-project/vllm/issues/4565

Batch expansion

e Problem: How to support scoring when PagedAttention only supports 1 query
token per sequence?

e Recommended reading: Optimizing attention for spec decode can reduce
latency / increase throughput

e TL:DR

o  We create “virtual sequences” in SpecDecodeWorker each with 1 query token

o This expands the batch (and duplicates KV loads in the attention layers)

o We can remove this with an attention kernel which supports PagedAttention + multiple query
tokens per sequence

o Contact https://github.com/LiuXiaoxuanPKU for more information



https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://github.com/LiuXiaoxuanPKU
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Batch expansion

e Problem: How to support scoring when PagedAttention only supports 1 query
token per sequence?

e Recommended reading: Optimizing attention for spec decode can reduce
latency / increase throughput

e TL:DR

o  We create “virtual sequences” in SpecDecodeWorker each with 1 query token

o This expands the batch (and duplicates KV loads in the attention layers)

o We can remove this with an attention kernel which supports PagedAttention + multiple query
tokens per sequence

o Contact https://github.com/LiuXiaoxuanPKU for more information



https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://github.com/LiuXiaoxuanPKU

Testing

e Problem: How can we validate correctness of spec decode?
e TL:DR:

o E2E: When temperature==0, we expect equality with and without spec decode
o Rejection sampler unit tests (output distribution does not change regardless of draft/target
probabilities))
e You can rely on these tests when contributing
o https://github.com/vlim-project/vlim/tree/main/tests/spec_decode
o https://github.com/vlim-project/vlim/tree/main/tests/spec_decode/e2e



https://github.com/vllm-project/vllm/tree/main/tests/spec_decode
https://github.com/vllm-project/vllm/tree/main/tests/spec_decode/e2e
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Future contribution ideas

e More engineering
Retrieval-acceleration https://arxiv.org/html/2401.14021v1

o Chunked prefill + spec decode
o Prefix caching + spec decode
@)
O

Guided decoding + spec decode
Inferentia / TPU / CPU support

e More modeling
o Meta-model for speculation length
o Meta-model for speculation type

e Large / mixed engineering+modeling
o  Multi-LoRA draft model (specialize to domains)
o  Online learning draft model https://arxiv.org/abs/2310.07177
o Batched parallel decoding https://github.com/vlim-project/vlim/issues/4303



https://arxiv.org/html/2401.14021v1
https://arxiv.org/abs/2310.07177
https://github.com/vllm-project/vllm/issues/4303

Thank you!

e Many people contributed

o Lily Liu, Cody Yu, Antoni Baum, vLLM creators, Vikas Ummadisetty, Chen Shen, Sang Cho
o Many others
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