
Handout: Python cheat sheets

Introduction
This is a reference handout for the Python elements covered in this unit. The sheets include
short explanations, brief notes, syntax, and selected examples.

The content has been grouped into categories:

● Variables, assignments, operators, and expressions

● Output and input

● Libraries: randomness and time

● Selection

● Iteration

Year 8 – Intro to Python programming Handout

Resources are updated regularly — the latest version is available at: ncce.io/tcc.

This resource is licensed under the Open Government Licence, version 3. For more information on this licence,
see ncce.io/ogl.

http://ncce.io/tcc

print(comma-separated literals, variables, expressions)

Display the string literal
"Hello world"

Syntax

Output
The print function displays literals (e.g. numbers,
text) and the values of variables and expressions.

Examples

print("Hello world")

print("Hello", user)

print(x, "times two is”, 2*x)

Display a string literal and the
value of the user variable

Display, among others, the value
of the expression 2*x

Input
The input function reads a line of text from the
keyboard and returns it.

input()

Syntax

Examples
Read text from the keyboard and
assign it to the name variablename = input()

years = int(input())
Read text from the keyboard,
convert it to an integer, and
assign it to the years variable

input()
Read text from the keyboard and
discard it (useful for pausing
execution until Enter is pressed)

Notes

Assign the value returned by input to a variable, if you
need to refer to that value later in your program.

Use the int function to convert the text returned by
input to an integer.

Use the float function to convert the text returned by
input to a floating-point number.

Assignment
An assignment statement evaluates an expression
and associates its value with the name of a variable
(an identifier).

variable name = expression

Syntax

Examples
Assign the string literal "Ada" to
the name variablename = "Ada"

days = 365*years
Evaluate the expression
365*years and assign the value
to the days variable

dice = randint(1,6)
Call the randint function and
assign the value it returns to the
dice variable

Notes

Do not interpret the = sign as an equation. Assignments
are actions to be performed.

Read assignments from right to left, i.e. evaluate the
expression and then assign the value to the variable.

A variable name can only refer to a single value. A new
assignment to a variable replaces the previous value of
the variable.

count = count+1
Evaluate the expression count+1
and assign the value to count,
i.e. increase count by 1

a = 2*a
Evaluate the expression 2*a and
assign the value to a,
i.e. double the value of a

Operators and expressions

Examples
An arithmetic expression involving
operators and literals3 + 13 * 3

2**8 - letters - numbers - symbols

a + b == c - d

Notes

Logical expressions evaluate to either
True or False.

‘Logical expression’ is a synonym for
condition. To evaluate a logical
expression is to check a condition.

user != "Ada" and logins < 3
A logical expression, which is the
conjunction of two simpler logical
expressions

Arithmetic
Perform calculations with numbers.
The result of these operations is also
a number.

Addition: +
Subtraction: -
Multiplication: *
Division: /
Integer division: //
Remainder: %
Exponent: **

Relational (comparisons)
Compare the values of expressions.
The result of these operations is either
True or False (so relational
operators form logical expressions).

Equal to: ==
Not equal to: !=
Less than: <
Less than or equal to: <=
Greater than: >
Greater than or equal to: >=

Logical
Negate or combine logical
expressions. The result of these
operations is either True or False.

Negation: not
Conjunction: and
Disjunction: or

applications <= positions A logical expression, comparing
the values of two variables

An arithmetic expression involving
operators, literals, and variables

A logical expression, checking if
the values of two expressions are
equal

from random import randint
coin = randint(0,1)

Call the randint function to
generate a random integer from
0 to 1 and assign the value that it
returns to the coin variable

Modules
Modules are libraries of existing code.

They extend the functionality of the language by
offering components (such as functions) that can be
imported and used in programs.

from variable import component

Syntax

Examples

from random import randint
dice = randint(1,6)

The random module
docs.python.org/3/library/random.html

Provides functionality for generating random numbers

Note

It is standard practice that you place all import statements
at the beginning of the program.

Call the randint function to
generate a random integer from
1 to 6 and assign the value that it
returns to the dice variable

from time import localtime
year = locatime().tm_year

Use the localtime function to
retrieve the current year and
assign it to the year variable

from time import sleep
sleep(3)

The time module
https://docs.python.org/3/library/time.html

Provides functionality for time and date handling

Call the sleep function to pause
program execution for 3 seconds

http://docs.python.org/3/library/random.html
https://docs.python.org/3/library/time.html

Selection
The if statement creates branches in the flow of
program execution.

At runtime, a condition or a sequence of conditions
are checked, to select which one of the possible
branches will be followed.

if condition:

 block of statements
 (the if block)

elif condition:

 block of statements
 (an elif block — optional, there may be many)

else:

 block of statements
 (the else block — optional)

Syntax

Examples

max = x
if y > max:
 max = y
if z > max:
 max = z

Notes

Out of the different blocks of statements contained in a
selection structure, at most one block will be executed at
runtime.

The blocks of statements can contain nested if and
while statements.

if temperature < 4:
 print("Freezing")
elif temperature < 18:
 print("Tolerable")
else:
 print("Nice and warm")

Check the range in which the
value of the temperature
variable lies and print an
appropriate message, depending
on the outcome

There are three possible, mutually
exclusive branches.

if dice1 == dice2:
 print("A double roll")
 total = 4*sum
else:
 total = sum

Check if the values of the dice1
and dice2 variables are equal
and perform the appropriate
actions, depending on the
outcome

There are two possible, mutually
exclusive branches.

Compute max, the greatest value
among x, y, and z

These if statements compare y
and z to the current max and
raise max, if necessary.

Without an elif, the two if
statements are not mutually
exclusive.

Iteration
The while statement creates a loop in the flow of
program execution.

At runtime, a set of actions is repeated and a
condition is checked to determine if the loop should
continue.

while condition:

 block of statements
 (the while block)

Syntax

Examples

Repeat the indented block of
statements while count does not
exceed 10

display a count from 1 to 10
count = 1
while count <= 10:
 print(count)
 count = count+1

Notes

The block of statements in the iterative structure may be
executed many times, once, or even not executed at all (if
the while condition is False when it is first checked).

The block of statements can contain nested if and
while statements.

print("What is your name?")
name = input()
only take "Ada" for an answer
while name != "Ada":
 print("I was expecting Ada")
 print("What is your name?")
 name = input()

end of loop, welcome user
print("Welcome")

non_zero = True
while non_zero == True:
 a = int(input())
 if a != 0:
 # display inverse of a
 print(1/a)
 else:
 non_zero = False

Repeat the indented block of
statements while name does not
equal "Ada"

Repeat the indented block of
statements while the Boolean flag
non_zero remains True

