2. Reasoning For Graph-based Recommendation
Outline
1 Introduction
The application scenario of recommendation:
1 Introduction
1 Introduction
[1] Gao, Chen, et al. "Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions." arXiv preprint arXiv:2109.12843 (2021).
[2] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
Outline
1 Introduction
Explainable recommender system: [1]
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
2 Preliminary
Graph-based Explainable
Recommender Systems
Input:
Output:
2 Preliminary
2 Preliminary
2 Preliminary
2 Preliminary
2 Preliminary
2 Preliminary
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
[2] Vig, J., S. Sen, and J. Riedl. 2009. “Tagsplanations: explaining recom- mendations using tags”. In: Proceedings of the 14th international conference on Intelligent user interfaces. ACM. 47–56.
[2]
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
[2] Zhang, Y., G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. “Explicit factor models for explainable recommendation based on phrase-level sentiment analysis”. SIGIR. ACM. 83–92. 2014.
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
[2] Papineni K, Roukos S, Ward T, et al. Bleu: a method for automatic evaluation of machine translation[C]//ACL. 2002: 311-318.
c is the length of the generated sentence and r is the ground-truth sentence length.
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
[2] Lin C Y. Rouge: A package for automatic evaluation of summaries[C]//Text summarization branches out. 2004: 74-81.
2 Preliminary
[1] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives[J]. arXiv preprint arXiv:1804.11192, 2018.
[2] Chen H, Li Y, Sun X, et al. Temporal meta-path guided explainable recommendation[C]//WSDM. 2021: 1056-1064.
[2]
Outline
3 Literature Review
3 Literature Review
Shortcoming: It does not involve the external information.
[1] Heckel R, Vlachos M, Parnell T, et al. Scalable and interpretable product recommendations via overlapping co-clustering[C]//ICDE. IEEE, 2017: 1033-1044.
3 Literature Review
3 Literature Review
3 Literature Review
[1] Huang, J., W. X. Zhao, H. Dou, J.-R. Wen, and E. Y. Chang (2018). “Improving sequential recommendation with knowledge-enhanced memory networks”. In: ACM SIGIR. ACM. 505–514.
3 Literature Review
[1] Ai, Q., V. Azizi, X. Chen, and Y. Zhang (2018). “Learning heterogeneous knowledge base embeddings for explainable recommendation”. Algorithms. 11(9): 137.
Textual sentence:
3 Literature Review
[1] Sun Y, Han J. Mining heterogeneous information networks: principles and methodologies[J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2): 1-159.
[2] Sun Y, Han J. Meta-path-based search and mining in heterogeneous information networks[J]. Tsinghua Science and Technology, 2013, 18(4): 329-338.
3 Literature Review
[1] Sun Y, Han J. Mining heterogeneous information networks: principles and methodologies[J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2): 1-159.
3 Literature Review
[1] Shi C, Zhang Z, Luo P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//CIKM. 2015: 453-462.
Shortcoming: Meta-path schema can only provide general and high-level explanations, because each node in the meta-path represents a type.
3 Literature Review
[1] Hu B, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//KDD. 2018: 1531-1540.
3 Literature Review
[1] Chen H, Li Y, Sun X, et al. Temporal meta-path guided explainable recommendation[C]//WSDM. 2021: 1056-1064.
Meta-path instance as explanation
3 Literature Review
[1] Chen H, Li Y, Sun X, et al. Temporal meta-path guided explainable recommendation[C]//WSDM. 2021: 1056-1064.
3 Literature Review
[1] Gretarsson B, O'Donovan J, Bostandjiev S, et al. Smallworlds: visualizing social recommendations[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing Ltd, 2010, 29(3): 833-842.
3 Literature Review
[1] Gretarsson B, O'Donovan J, Bostandjiev S, et al. Smallworlds: visualizing social recommendations[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing Ltd, 2010, 29(3): 833-842.
Outline
4 Conclusion
explainability
Performance of recommendation
Trade-off of explainability and performance
4 Conclusion
[1]
[1] Time Matters: Sequential Recommendation with Complex Temporal Information. SIGIR 2020.
4 Conclusion
4 Conclusion
4 Conclusion
Thanks for your listening.