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DataOps vs DevOps 

Source: DevOps vs DataOps (by Sprinkle Data)

https://www.sprinkledata.com/blogs/devops-vs-dataops
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What Led To The Rise of DataOps? 
1. Massive Volumes of Complex Data
2. Technology Overload
3. Diverse Roles and Mandates

Source: Modern Analytics Stack (by Datafold)

Source: Apache Spark DataFrames for Large Scale Data 
Science (by Databricks)

Source: What is DataOps? (by Atlan)

https://www.datafold.com/blog/modern-analytics-stack
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
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https://atlan.com/what-is-dataops/
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Data Is More Important Than 

Models

This sentiment is conveyed by Francois Chollet - the creator of 
Keras (Source: Twitter)

https://twitter.com/fchollet/status/1353422914071142400
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Rareplane dataset that incorporates both real and 
synthetically generated satellite imagery (Source: Superb AI)

https://www.superb-ai.com/dataset/rareplanes-dataset
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Principle 1 - Implement Best Practices for Development

Follow Software Engineering Cycle Guidelines
● Version control
● Code reviews
● Unit testing
● Artifacts management
● Release automation
● Infrastructure as code
● OSS Tools: Git, Docker, Terraform

Source: Engineering Best Practices for ML (by Alex Serban)

Source: Rules of ML (by Google)

https://se-ml.github.io/practices/
https://developers.google.com/machine-learning/guides/rules-of-ml
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Principle 2 - Automate and Orchestrate All Data Flows

Source: Continuous Delivery for Machine Learning (by ThoughtWorks)

Continuous Integration and 
Continuous Delivery

● Automate deployment with CI/CD 
pipelines

● Discourage manual data wrangling
● Run the data flows using an 

orchestrator
○ Backfilling
○ Scheduling
○ Pipeline metrics

● OSS Tools: Airflow, Dagster, Prefect

https://martinfowler.com/articles/cd4ml.html
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Principle 3 - Test Data Quality In All Stages of Data Lifecycle

Source: Why Data Quality Is Key to Successful MLOps (by Superconductive)

Continuous Testing
● Test the data arriving from 

sources
○ Data unit tests
○ Schema/SQL/Streaming 

tests
● Validate data at different stages 

in the data flow
● Capture and publish metrics
● Reuse test tools across projects
● OSS Tool: great_expectations

https://greatexpectations.io/blog/ml-ops-data-quality/
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Source: What is Data Observability? (by Monte Carlo)

Source: Beyond Monitoring: The Rise of Observability 
(by Arize AI)

Improve Observability
● Define data quality metrics

○ Technical metrics
○ Functional metrics
○ Performance metrics

● Visualize metrics
● Configure meaningful alerts

Source: Anatomy of an Enterprise AI Observability Platform 
(by WhyLabs)
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Principle 5 - Build a Common Data and Metadata Model

Source: Automated Data Versioning (by Pachyderm)

Focus on Data Semantics
● Create a common data model
● Share the same terminology and 

schemas
○ Development teams
○ Data teams
○ Business teams

● Use a data catalog to share 
knowledge

● OSS Tools: dbt, Amundsen, 
DataHub, Marquez

https://www.pachyderm.com/features/#automated-data-versioning
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Cross-Functional Teams
● Use knowledge in 

cross-functional teams
○ Define important metrics 

and KPIs
○ Shared-objectives with 

business goals
● Remove bottlenecks for data 

usage
○ Self-service data 

monitoring
○ Democratize access to 

the data
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Challenge 1: Curate High-Quality Data Points

Pain Points
1. Require domain knowledge
2. Can’t deal with the 4 Vs of big data 

(Volume, Velocity, Variety, Veracity)
3. Narrow solutions

Solutions
1. Visualize massive datasets
2. Discover and retrieve data with ease
3. Curate diverse scenarios
4. Integrate seamlessly with existing 

workflows and tools

Source: The Best Data Curation Tools for Computer Vision (by Siasearch)

https://www.siasearch.io/blog/best-data-curation-tools-for-computer-vision


Challenge 1: Curate High-Quality Data Points

● Pain Points
○ Require domain knowledge
○ Can’t deal with the 4 Vs of big data
○ Narrow solutions

● Solutions
○ Visualize massive datasets
○ Discover and retrieve data with ease
○ Curate diverse scenarios
○ Integrate seamlessly with existing 

workflows and tools

Source: The Best Data Curation Tools for Computer Vision (by Siasearch)

https://www.siasearch.io/blog/best-data-curation-tools-for-computer-vision


Challenge 2: Label and Audit Data at Massive Scale

Source: Automate Data Preparation for Computer Vision (by Superb AI)

Pain Points
1. Manual labeling and quality assurance 

is painfully slow
2. Label quality is bad when dealing with 

domain-specific datasets and hard 
edge cases

Solutions
1. Automatically label data
2. Identify and audit hard labels
3. Use active learning for human 

verification of labels

https://www.superb-ai.com/product/automate
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Challenge 3: Account For Data Drift

Source: Why Should You Care About Data and Concept Drift (by Evidently AI)

Pain Points
1. Upstream process changes
2. Data quality issues
3. Natural drift in the data
4. Covariate shift

Solutions
1. Detect data drifts and raise alerts
2. Analyze where and why drift happens
3. Adapt to drift and improve model 

performance

https://evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift
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Following The Footsteps of The Modern Data Stack

The Modern Data Stack is a 
collection of cloud-native tools 
centered around a cloud data 
warehouse.

Benefits:
1. Ease of Use
2. Wide Adoption
3. Automation
4. Cost

Source: The Modern Data Stack Ecosystem - Spring 2022 Edition (by Continual)

https://continual.ai/post/the-modern-data-stack-ecosystem-spring-2022-edition
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The Canonical Stack for ML

Source: The Rapid Evolution of the Canonical Stack for Machine Learning 
(by Daniel Jeffries)

https://opendatascience.com/the-rapid-evolution-of-the-canonical-stack-for-machine-learning/
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