DataOps For The Modern Computer Vision Stack

James Le

DataOps For The Modern Computer Vision Stack

James Le

Presenter Profile

James Le

Now

- Data Advocate
- Data Writer
- Data Podcaster

Before

- ML Researcher
- Data Scientist
- Data Journalist

Interests

- Data/ML Infrastructure
- Venture Capital
- Community-Led Growth

□ Superb AI

NOW

- Data Advocate
- Data Writer
- Data Podcaster

BEFORE

- Machine Learning Researcher
- Data Scientist
- Data Journalist

INTERESTS

- Data/ML Infrastructure
- Venture Capital
- Community-Led Growth

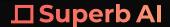


Data Notes

Technical Concepts + Industry Advice From The Data World

Agenda

- 1. What Is DataOps?
- 2. Why DataOps For Computer Vision?
- 3. DataOps Key Principles
- 4. DataOps Pipeline for the Computer Vision Stack
- 5. Data Challenges for Computer Vision Teams
- 6. The Future of the Modern Computer Vision Stack

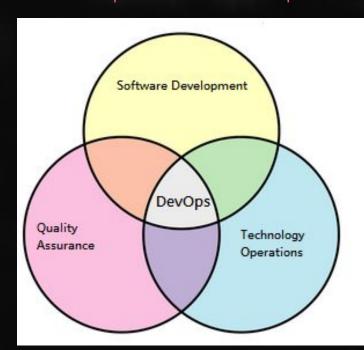


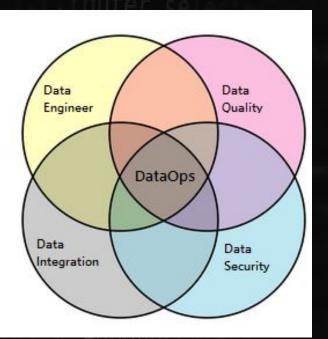
- 1 What Is DataOps?
- 2 Why DataOps for Computer Vision?
- 3 DataOps Key Principles
- 4 DataOps Pipeline for the Computer Vision Stack
- 5 Data Challenges for Computer Vision Teams
- 6 The Future of The Modern Computer Vision Stack

What Is DataOps?

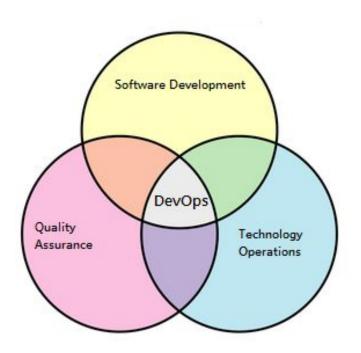
What Is DataOps?

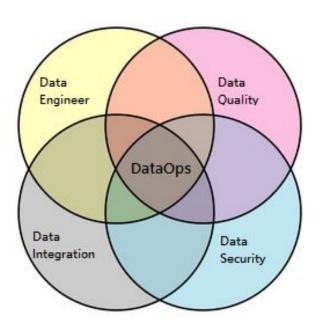
DataOps vs DevOps





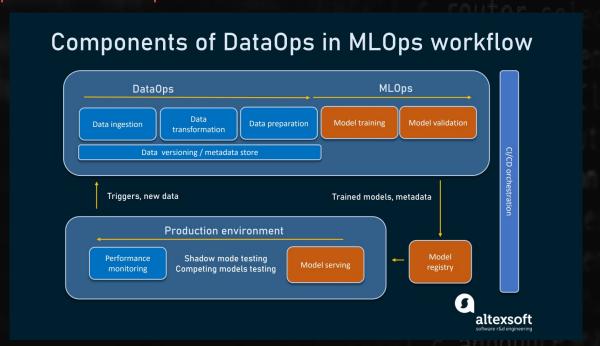
Source: <u>DevOps vs DataOps</u> (by Sprinkle Data)



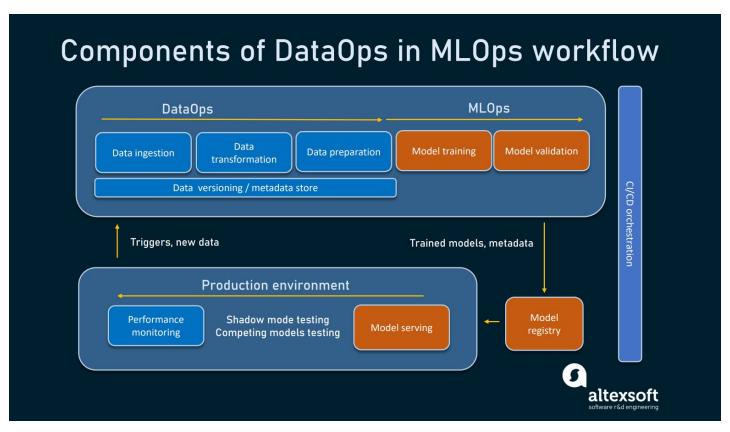


Source: <u>DevOps vs DataOps</u> (by Sprinkle Data)

DataOps vs MLOps



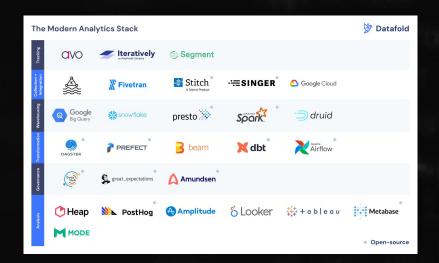
Source: <u>DataOps - Adjusting DevOps for Analytics Product</u>
<u>Development</u> (by Altexsoft)



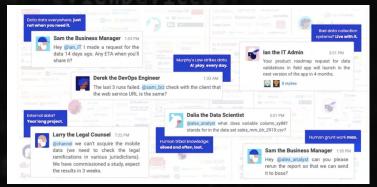
Source: <u>DataOps - Adjusting DevOps for Analytics Product Development</u> (by Altexsoft)

What Led To The Rise of DataOps?

- 1. Massive Volumes of Complex Data
- 2. Technology Overload
- 3. Diverse Roles and Mandates



Source: <u>Apache Spark DataFrames for Large Scale Data</u> <u>Science</u> (by Databricks)



Source: What is DataOps? (by Atlan)

What Led To The Rise of DataOps?

☐ Superb Al

- Massive Volumes of Complex Data
- Technology Overload

The Modern Analytics Stack

MODE

Diverse Roles and Mandates

and more ...

₩ Datafold

Open-source

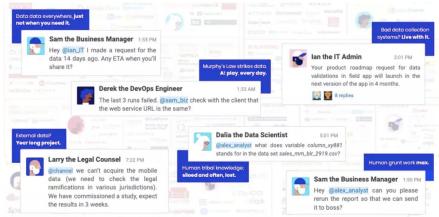
% Looker

+ a b | e a u

Source: <u>Modern Analytics Stack</u> (by Datafold)

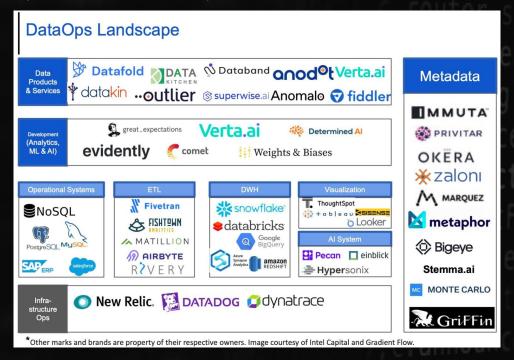
Amplitude

Source: Apache Spark DataFrames for Large Scale Data Science (by Databricks)



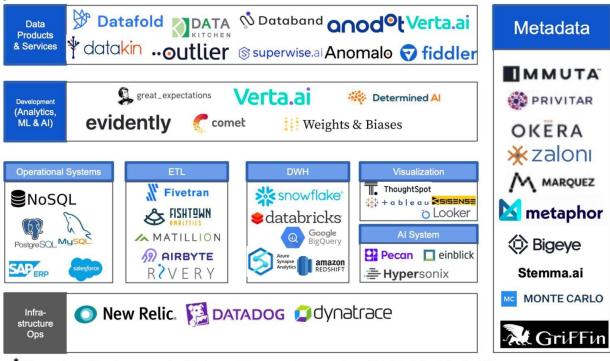
Source: What is DataOps? (by Atlan)

The DataOps Landscape



Source: What is DataOps? (by Gradient Flow)

DataOps Landscape



^{*}Other marks and brands are property of their respective owners. Image courtesy of Intel Capital and Gradient Flow.

Source: What is DataOps? (by Gradient Flow)

Why DataOps For Computer Vision?

Why DataOps For Computer Vision?

Why DataOps For Computer Vision?

 $\left(\frac{1}{3}\right)$

Data Is More Important Than Models

Thread

François Chollet 🔮 @fchollet · Jan 24

ML researchers work with fixed benchmark datasets, and spend all of their time searching over the knobs they do control: architecture & optimization. In applied ML, you're likely to spend most of your time on

data collection and annotation -- where your investment will pay off.

2

43

 \circ 2

, **1**

François Chollet 🤣

@fchollet

Replying to @fchollet

In general, there is very little research done on best practices for data curation / cleaning / annotation, even though these steps have more impact on applications than incremental architecture improvements. Preparing the data is an exercise left to the reader

11:22 AM · Jan 24, 2021 · Twitter for Android

176 Retweets

35 Quote Tweets

1,382 Likes

This sentiment is conveyed by Francois Chollet - the creator of Keras (Source: <u>Twitter</u>)

Why DataOps For Computer Vision? (1/3)

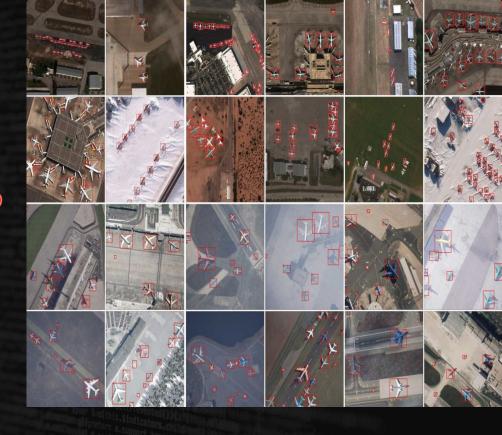
Data Is More Important Than Models

This sentiment is conveyed by Francois Chollet - the creator of Keras (Source: Twitter)

Why DataOps For Computer Vision?

 $\left(\frac{2}{3}\right)$

Unstructured Data
Preparation Is Challenging

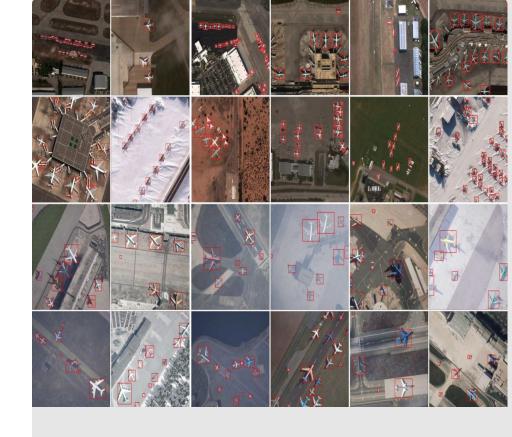


Rareplane dataset that incorporates both real and synthetically generated satellite imagery (Source: <u>Superb Al</u>)

□ Superb AI

Why DataOps For Computer Vision? (2/3)

Unstructured Data
Preparation Is Challenging



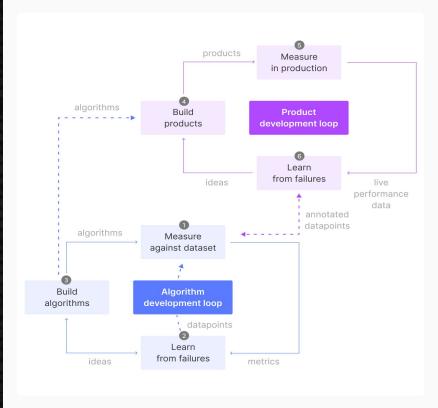
Rareplanes dataset that incorporates both real and synthetically generated satellite imagery (Source: <u>Superb AI</u>)

Why DataOps For Computer Vision? (3/3)

Building Computer Vision

Applications Is Iterative

Start with Data



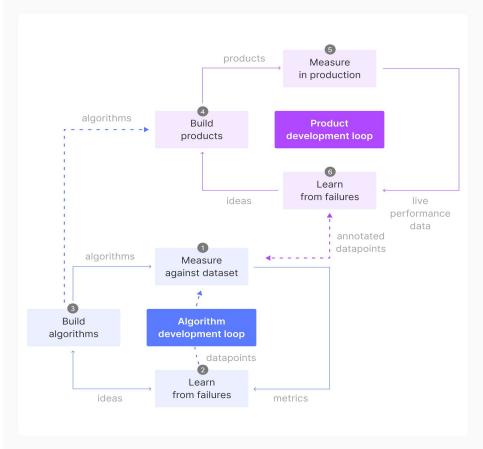
The Two Loops of Building Algorithmic Products (Source: <u>Taivo Pungas</u>)

□ Superb AI

Why DataOps For Computer Vision? (3/3)

Building Computer Vision Applications is Iterative

Start with Data



The Two Loops of Building Algorithmic Products (Source: <u>Taivo</u> Pungas)

Key Principles

DataOps Key Principles

Principle 1 - Implement Best Practices for Development

Follow Software Engineering Cycle Guidelines

- Version control
- Code reviews
- Unit testing
- Artifacts management
- Release automation
- Infrastructure as code
- OSS Tools: Git, Docker, Terraform

Source: Engineering Best Practices for ML (by Alex Serban)

Rules of Machine Learning: Best Practices for ML Engineering

Martin Zinkevich

This document is intended to help those with a basic knowledge of machine learning get the benefit of best practices in machine learning from around Google. It presents a style for machine learning, similar to the Google C++ Style Guide and other popular guides to practical programming. If you have taken a class in machine learning, or built or worked on a machine-learned model, then you have the necessary background to read this document.

Terminology

Overview

Before Machine Learning

Rule #1: Don't be afraid to launch a product without machine learning.

Rule #2: Make metrics design and implementation a priority.

Rule #3: Choose machine learning over a complex heuristic.

ML Phase I: Your First Pipeline

Rule #4: Keep the first model simple and get the infrastructure right.

Rule #5: Test the infrastructure independently from the machine learning.

Rule #6: Be careful about dropped data when copying pipelines.

Rule #7: Turn heuristics into features, or handle them externally.

Monitoring

Rule #8: Know the freshness requirements of your system.

Rule #9: Detect problems before exporting models.

Rule #10: Watch for silent failures.

Rule #11: Give feature sets owners and documentation.

Your First Objective

Rule #12: Don't overthink which objective you choose to directly optimize.

Rule #13: Choose a simple, observable and attributable metric for your first

objective.

Rule #14: Starting with an interpretable model makes debugging easier.

Rule #15: Separate Spam Filtering and Quality Ranking in a Policy Layer.

ML Phase II: Feature Engineering

Rule #16: Plan to launch and iterate.

Rule #17: Start with directly observed and reported features as opposed to learned features.

Principle 1 - Implement Best Practices for Development

Follow Software Engineering Cycle Guidelines

- Version control
- Code reviews
- Unit testing
- Artifacts management
- Release automation
- Infrastructure as code
- OSS Tools: Git, Docker, Terraform

Source: Engineering Best Practices for ML (by Alex Serban)

Rules of Machine Learning: Best Practices for ML Engineering

Martin Zinkevich

This document is intended to help those with a basic knowledge of machine learning get the benefit of best practices in machine learning from around Google. It presents a style for machine learning, similar to the Google C++ Style Guide and other popular guides to practical programming. If you have taken a class in machine learning, or built or worked on a machine-learned model, then you have the necessary background to read this document.

Terminology

Overview

Before Machine Learning

Rule #1: Don't be afraid to launch a product without machine learning.

Rule #2: Make metrics design and implementation a priority.

Rule #3: Choose machine learning over a complex heuristic.

ML Phase I: Your First Pipeline

Rule #4: Keep the first model simple and get the infrastructure right.

Rule #5: Test the infrastructure independently from the machine learning.

Rule #6: Be careful about dropped data when copying pipelines.

Rule #7: Turn heuristics into features, or handle them externally.

Monitoring

Rule #8: Know the freshness requirements of your system.

Rule #9: Detect problems before exporting models.

Rule #10: Watch for silent failures.

Rule #11: Give feature sets owners and documentation.

Your First Objective

Rule #12: Don't overthink which objective you choose to directly optimize.

Rule #13: Choose a simple, observable and attributable metric for your first objective.

Rule #14: Starting with an interpretable model makes debugging easier.

Rule #15: Separate Spam Filtering and Quality Ranking in a Policy Layer.

ML Phase II: Feature Engineering

Rule #16: Plan to launch and iterate.

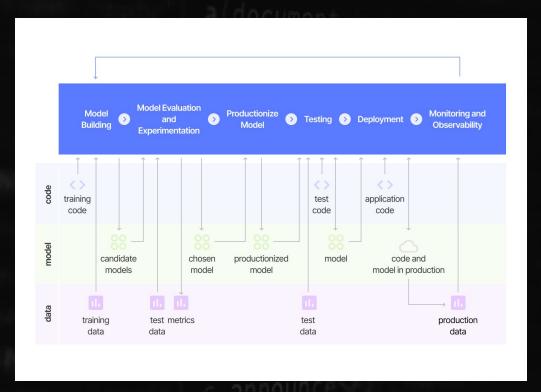
Rule #17: Start with directly observed and reported features as opposed to learned features.

Source: Rules of ML (by Google)

Principle 2 - Automate and Orchestrate All Data Flows

Continuous Integration and Continuous Delivery

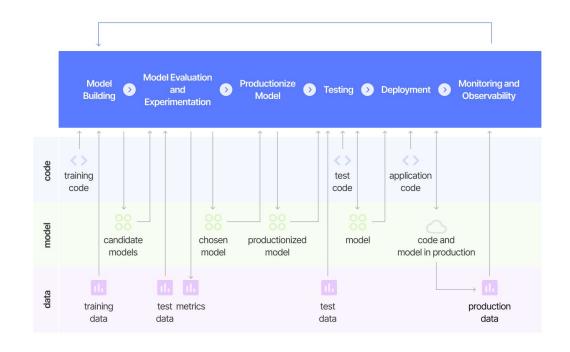
- Automate deployment with CI/CD pipelines
- Discourage manual data wrangling
- Run the data flows using an orchestrator
 - Backfilling
 - Scheduling
 - Pipeline metrics
- OSS Tools: Airflow, Dagster, Prefect



Source: Continuous Delivery for Machine Learning (by ThoughtWorks)

Continuous Integration and Continuous Delivery

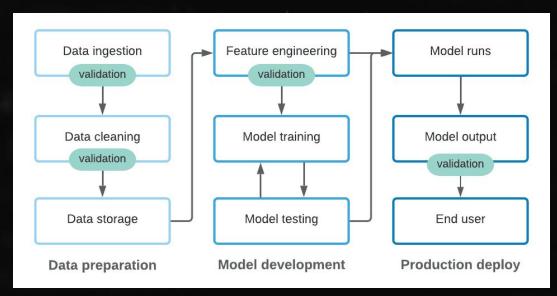
- Automate deployment with CI/CD pipelines
- Discourage manual data wrangling
- Run the data flows using an orchestrator
 - Backfilling
 - Scheduling
 - Pipeline metrics
- OSS Tools: Airflow, Dagster, Prefect



Principle 3 - Test Data Quality In All Stages of Data Lifecycle

Continuous Testing

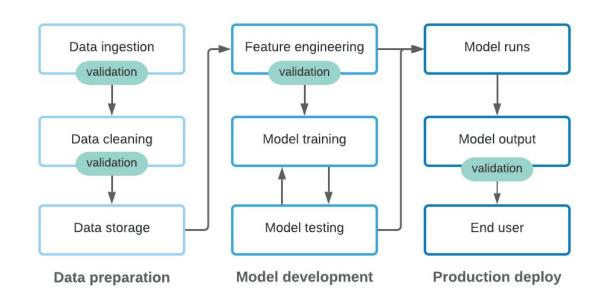
- Test the data arriving from sources
 - Data unit tests
 - Schema/SQL/Streaming tests
- Validate data at different stages in the data flow
- Capture and publish metrics
- Reuse test tools across projects
- OSS Tool: great_expectations



Source: Why Data Quality Is Key to Successful MLOps (by Superconductive)

Continuous Testing

- Test the data arriving from sources
 - Data unit tests
 - Schema/SQL/Streaming tests
- Validate data at different stages in the data flow
- Capture and publish metrics
- Reuse test tools across projects
- OSS Tool: great_expectations

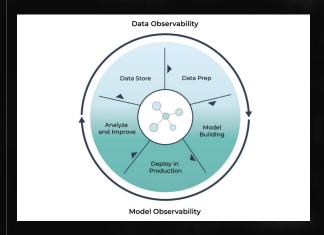


Source: Why Data Quality Is Key to Successful MLOps (by Superconductive)

Principle 4 - Monitor Quality and Performance Metrics Across Data Flows

Improve Observability

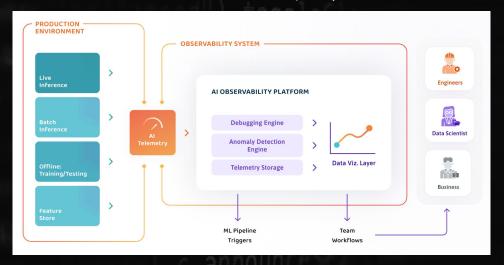
- Define data quality metrics
 - Technical metrics
 - Functional metrics
 - Performance metrics
- Visualize metrics
- Configure meaningful alerts



DATA OBSERVABILITY PILLARS

Freshness | Distribution | Volume | Schema | Lineage

Source: What is Data Observability? (by Monte Carlo)



Source: Anatomy of an Enterprise AI Observability Platform

(by WhyLabs)

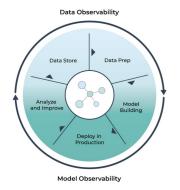
☐ Superb AI

Source: <u>Beyond Monitoring: The Rise of Observability</u> (by Arize AI)

Principle 4 - Monitor Quality and Performance Metrics Across Data Flowsuperb Al

Improve Observability

- Define data quality metrics
 - Technical metrics
 - Functional metrics
 - Performance metrics
- Visualize metrics
- Configure meaningful alerts

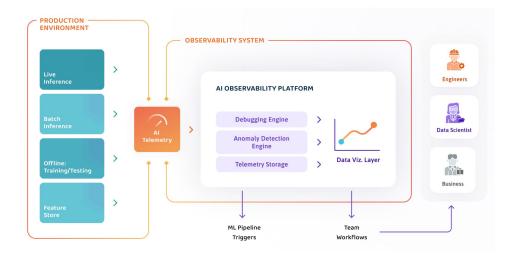


Source: <u>Beyond Monitoring: The Rise of Observability</u> (by Arize AI)

DATA OBSERVABILITY PILLARS

Freshness | Distribution | Volume | Schema | Lineage

Source: What is Data Observability? (by Monte Carlo)

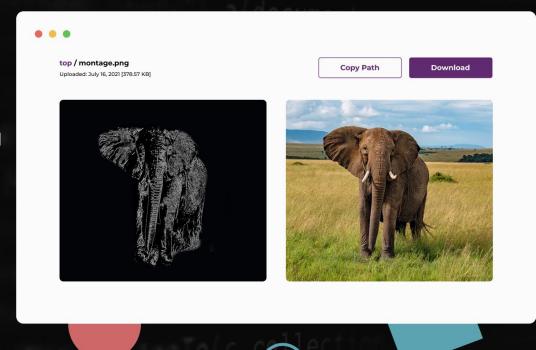


Source: <u>Anatomy of an Enterprise AI Observability Platform</u> (by WhyLabs)

Principle 5 - Build a Common Data and Metadata Model

Focus on Data Semantics

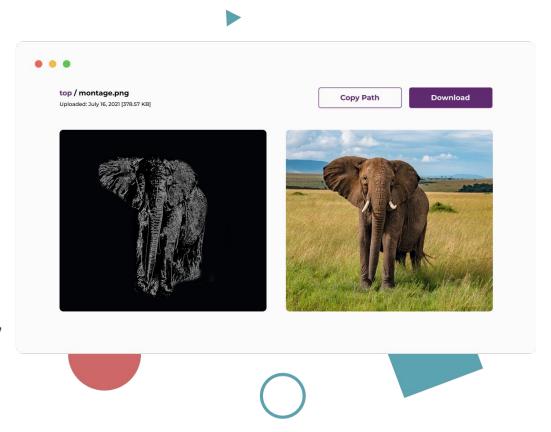
- Create a common data model
- Share the same terminology and schemas
 - Development teams
 - Data teams
 - Business teams
- Use a data catalog to share knowledge
- OSS Tools: dbt, Amundsen, DataHub, Marquez



Source: <u>Automated Data Versioning</u> (by Pachyderm)

Focus on Data Semantics

- Create a common data model
- Share the same terminology and schemas
 - Development teams
 - Data teams
 - Business teams
- Use a data catalog to share knowledge
- OSS Tools: dbt, Amundsen, DataHub, Marquez

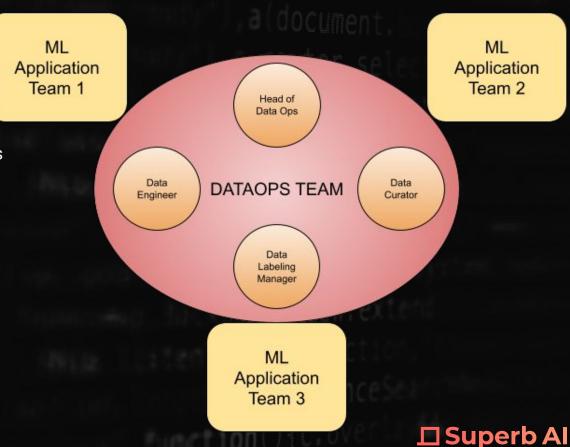


Source: <u>Automated Data Versioning</u> (by Pachyderm)

Principle 6 - Empower Collaboration Among Data Stakeholders

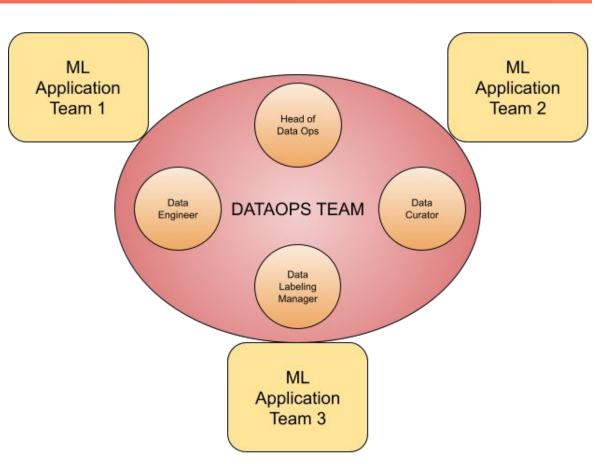
Cross-Functional Teams

- Use knowledge in cross-functional teams
 - Define important metrics and KPIs
 - Shared-objectives with business goals
- Remove bottlenecks for data usage
 - Self-service data monitoring
 - Democratize access to the data



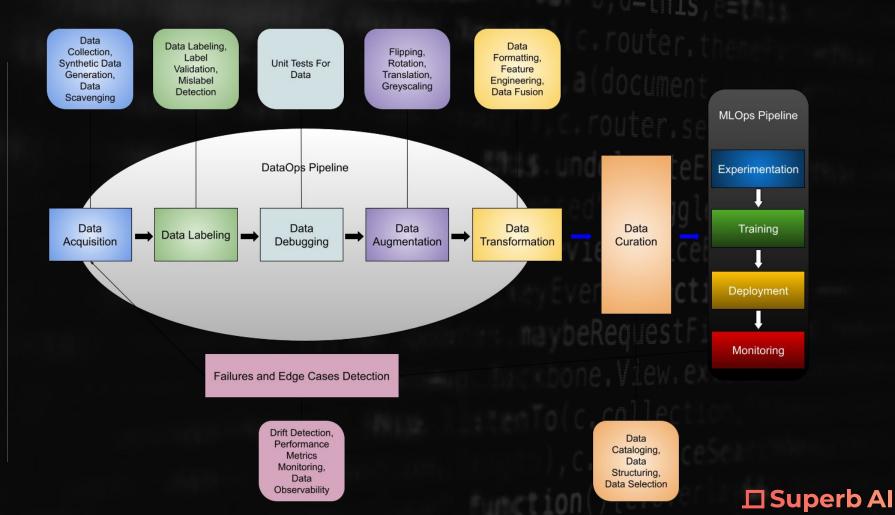
Cross-Functional Teams

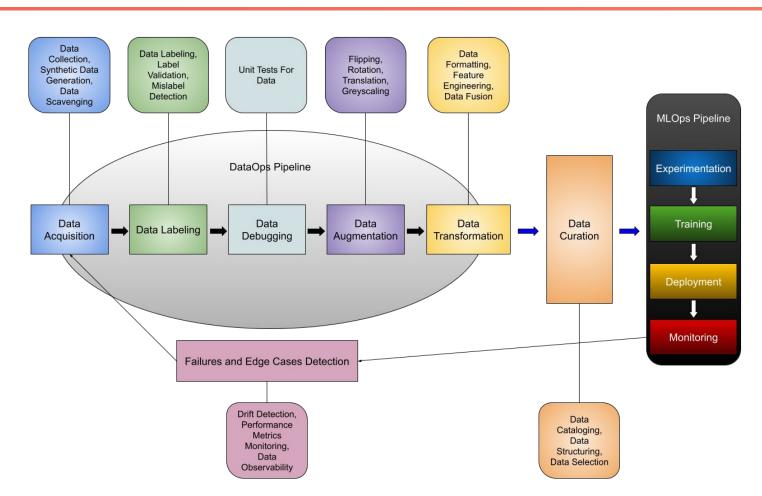
- Use knowledge in cross-functional teams
 - Define important metrics and KPIs
 - Shared-objectives with business goals
- Remove bottlenecks for data usage
 - Self-service data monitoring
 - Democratize access to the data



DataOps For Computer Vision Stack?

DataOps For Computer Vision Stack?





Key Data Challenges For Computer Vision Teams

Key Data
Challenges For
Computer Vision
Teams

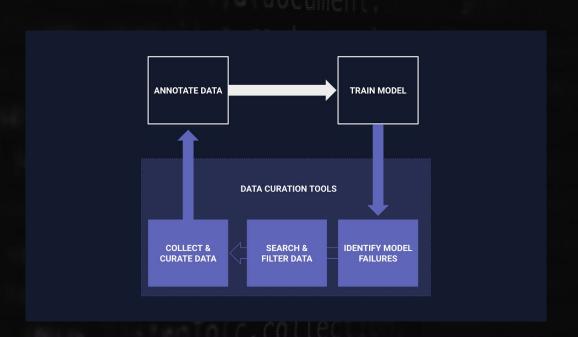
Challenge 1: Curate High-Quality Data Points

Pain Points

- 1. Require domain knowledge
- 2. Can't deal with the 4 Vs of big data (Volume, Velocity, Variety, Veracity)
- 3. Narrow solutions

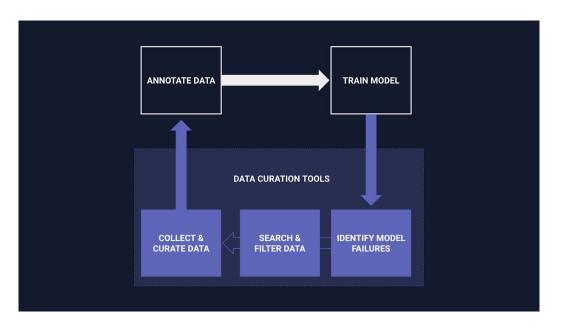
Solutions

- 1. Visualize massive datasets
- 2. Discover and retrieve data with ease
- 3. Curate diverse scenarios
- Integrate seamlessly with existing workflows and tools



Source: The Best Data Curation Tools for Computer Vision (by Siasearch)

- Pain Points
 - Require domain knowledge
 - o Can't deal with the 4 Vs of big data
 - Narrow solutions
- Solutions
 - Visualize massive datasets.
 - Discover and retrieve data with ease
 - Curate diverse scenarios
 - Integrate seamlessly with existing workflows and tools



Source: The Best Data Curation Tools for Computer Vision (by Siasearch)

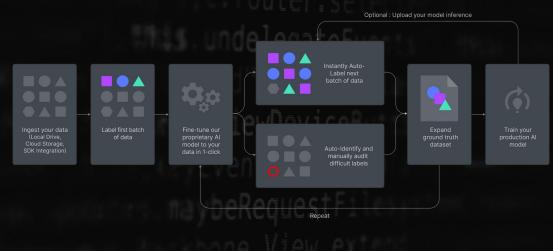
Challenge 2: Label and Audit Data at Massive Scale

Pain Points

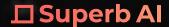
- Manual labeling and quality assurance is painfully slow
- Label quality is bad when dealing with domain-specific datasets and hard edge cases

Solutions

- 1. Automatically label data
- 2. Identify and audit hard labels
- 3. Use active learning for human verification of labels



Source: Automate Data Preparation for Computer Vision (by Superb AI)

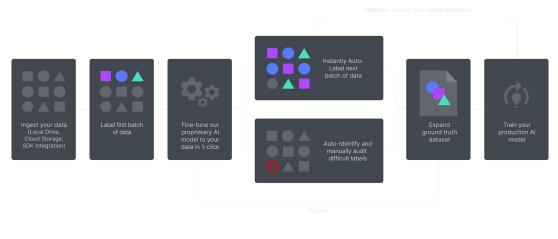


Pain Points

- Manual labeling and quality assurance is painfully slow
- Label quality is bad when dealing with (1) domain-specific datasets and (2) hard edge cases

Solutions

- o Automatically label data
- o Identify and audit hard labels
- Use active learning for human verification of labels



Source: <u>Automate Data Preparation for Computer Vision</u> (by Superb AI)

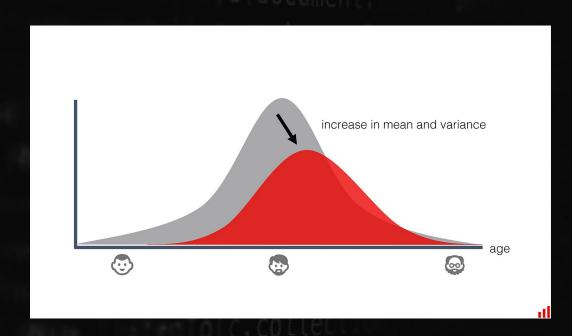
Challenge 3: Account For Data Drift

Pain Points

- 1. Upstream process changes
- 2. Data quality issues
- 3. Natural drift in the data
- 4. Covariate shift

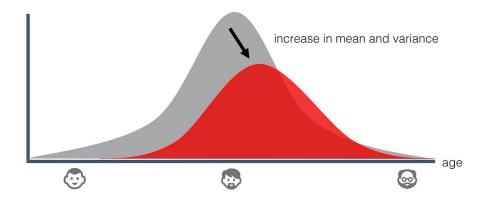
Solutions

- 1. Detect data drifts and raise alerts
- 2. Analyze where and why drift happens
- Adapt to drift and improve model performance



Source: Why Should You Care About Data and Concept Drift (by Evidently AI)

- Pain Points
 - Upstream process changes
 - Data quality issues
 - Natural drift in the data
 - Covariate shift
- Solutions
 - Detect data drifts and raise alerts
 - Analyze where and why drift happens
 - Adapt to drift and improve model performance



Source: Why Should You Care About Data and Concept Drift (by Evidently AI)

The Future Of The Modern Computer Vision Stack

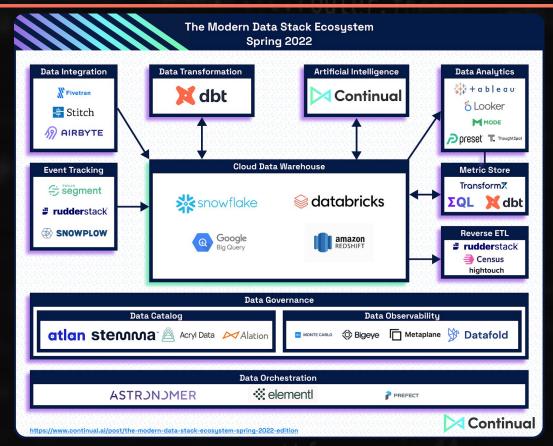
The Future of The Modern Computer Vision Stack

Following The Footsteps of The Modern Data Stack

The Modern Data Stack is a collection of cloud-native tools centered around a cloud data warehouse.

Benefits:

- Ease of Use
- Wide Adoption
- Automation
- Cost

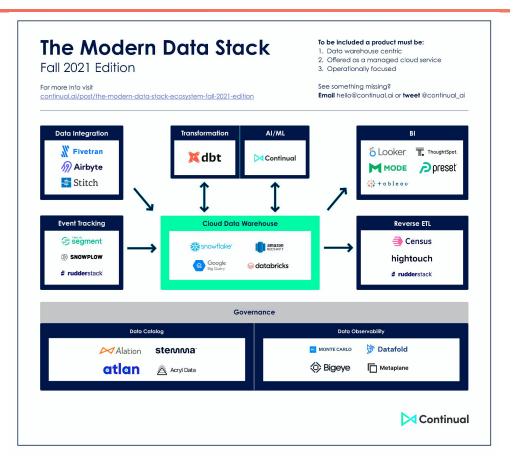


Following The Footstep of "The Modern Data Stack"

The Modern Data Stack is a collection of cloud-native tools centered around a cloud data warehouse.

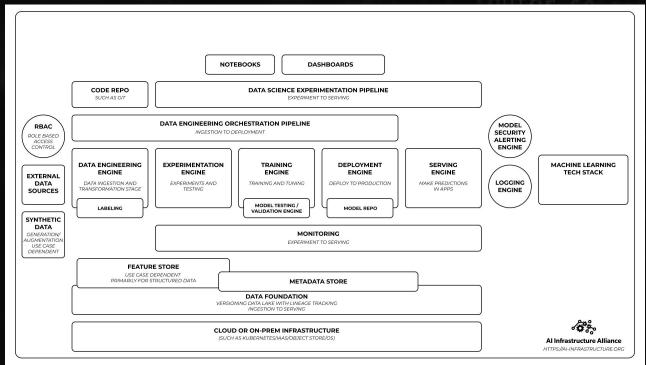
Benefits:

- 1. Ease of Use
- 2. Wide Adoption
- 3. Automation
- 4. Cost

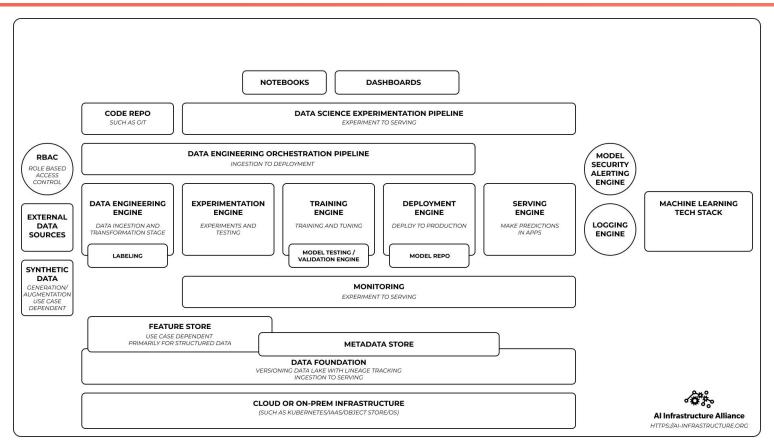


Source: The Modern Data Stack Ecosystem - Fall 2021 Edition (by Continual)

The Canonical Stack for ML

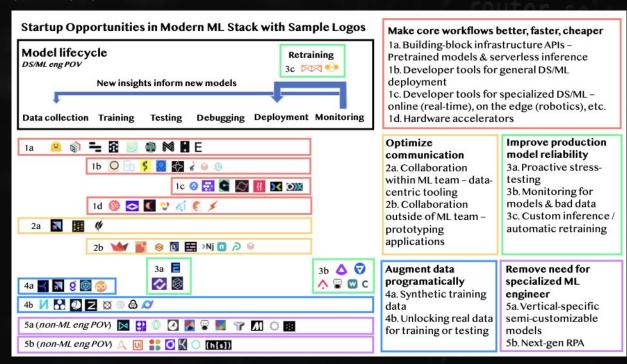


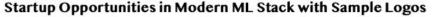
The Canonical Stack for Machine Learning

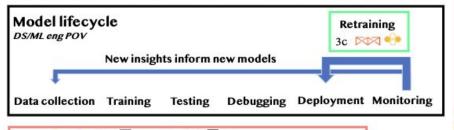


Source: <u>The Rapid Evolution of the Canonical Stack for Machine Learning</u> (by Daniel Jeffries)

Startup Opportunities in ML Infrastructure







UI 👫 🧿 K 🔘

5b (non-ML eng POV) A

Make core workflows better, faster, cheaper

1a. Building-block infrastructure APIs –
Pretrained models & serverless inference
1b. Developer tools for general DS/ML
deployment

1c. Developer tools for specialized DS/ML – online (real-time), on the edge (robotics), etc. 1d. Hardware accelerators

Optimize communication

2a. Collaboration
within ML team – datacentric tooling
2b. Collaboration
outside of ML team –
prototyping
applications

Improve production model reliability

3a. Proactive stresstesting 3b. Monitoring for models & bad data 3c. Custom inference / automatic retraining

Augment data programatically

4a. Synthetic training data 4b. Unlocking real data for training or testing

Remove need for specialized ML engineer

5a. Vertical-specific semi-customizable models 5b. Next-gen RPA

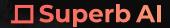
Thank you!

James Le

Website: jameskle.com

Twitter: <u>@le_james94</u>

Email: james.le@superb-ai.com



Thank you!

James Le Website: <u>jameskle.com</u> Twitter: <u>@le_james94</u>

Email: james.le@superb-ai.com